{"title":"Secure multiple adaptive kernel diffusion LMS algorithm for distributed estimation over sensor networks","authors":"Zahra Khoshkalam, Hadi Zayyani, Mehdi Korki","doi":"10.1049/wss2.12096","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a kernel-based approach to enhance the security of distributed estimation in the presence of adversary links. Adversary links often degrade distributed recovery algorithm performance in distributed estimation. The authors propose secure distributed estimation algorithms employing an adaptive kernel and adaptive combination coefficients derived from it. The authors’ method includes a multiple kernel approach with varied widths and a heuristic formula for combination coefficients, improving performance in the presence of adversary links. Additionally, the approach is extended to single exponential kernels with fixed and adaptive widths, treating them as special cases. The multiple kernel method is used because it provides more degrees of freedom compared to a single kernel, leading to better results. Simulation results show that the proposed multiple kernel approach achieves performance close to the diffusion least mean square algorithm in the absence of attacks. The adaptive nature of the kernel and coefficients enhances algorithm robustness, making it promising for secure distributed estimation in the presence of adversary links.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":"14 6","pages":"477-483"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12096","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a kernel-based approach to enhance the security of distributed estimation in the presence of adversary links. Adversary links often degrade distributed recovery algorithm performance in distributed estimation. The authors propose secure distributed estimation algorithms employing an adaptive kernel and adaptive combination coefficients derived from it. The authors’ method includes a multiple kernel approach with varied widths and a heuristic formula for combination coefficients, improving performance in the presence of adversary links. Additionally, the approach is extended to single exponential kernels with fixed and adaptive widths, treating them as special cases. The multiple kernel method is used because it provides more degrees of freedom compared to a single kernel, leading to better results. Simulation results show that the proposed multiple kernel approach achieves performance close to the diffusion least mean square algorithm in the absence of attacks. The adaptive nature of the kernel and coefficients enhances algorithm robustness, making it promising for secure distributed estimation in the presence of adversary links.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.