Prospects for conserving freshwater fish biodiversity in the Anthropocene: A view from Southern China 人类世下淡水鱼类生物多样性保护的前景:以中国南方为视角

David Dudgeon
{"title":"Prospects for conserving freshwater fish biodiversity in the Anthropocene: A view from Southern China\n 人类世下淡水鱼类生物多样性保护的前景:以中国南方为视角","authors":"David Dudgeon","doi":"10.1002/inc3.79","DOIUrl":null,"url":null,"abstract":"<p>Globally, population declines of freshwater animals have been consistently greater than counterparts in other realms, making fresh waters hot spots of endangerment—particularly for larger species. Furthermore, biotas have become increasingly homogenized as invasions by non-native species proceed. These trends are particularly evident in Anthropocene China, where humans have profoundly altered freshwater ecosystems, with serious consequences for fishes and other aquatic vertebrates. Here, I examine the prospects for ‘bending the curve’ or reversing the trend of freshwater fish biodiversity loss in China, focusing on examples from the Yangtze and further south. Much of China's rich fish biodiversity is threatened, but a lack of contemporary surveys means that the conservation status of many species is uncertain, and ~40% of fishes are data deficient. Although nutrient pollution of major rivers has abated recently, poor water quality remains a concern, and the widespread proliferation of emerging contaminants and microplastics can be expected to have unpredictable (but detrimental) effects on the biota. Warmer temperatures will exacerbate the toxicity of micropollutants, and facilitate the spread of non-native species that have been supplanting native fishes. Extensive dam construction has fragmented major rivers, and has blocked fish migrations, preventing access to spawning sites and leading to population extirpations. Dams limit the ability of fishes to adjust their ranges to compensate for global warming, with increased drought severity and frequency under climate change representing an existential threat. Overexploitation will be reduced by the recent introduction of a 10-year fishing ban in the Yangtze basin, but dams, flow regulation, emerging contaminants and continuing habitat degradation will stymie any population recovery or significant recovery of biodiversity as a result of the ban. Furthermore, captive breeding and release programmes have failed to restore populations of threatened fishes because poor management of breeding stock has allowed inbreeding or hybridization leading to genetic pollution of wild populations. Other anthropogenic activities, such as large-scale mining of river sand on the Yangtze flood plain—exacerbated by the sediment-trapping effects of upstream dams—are persistent obstacles to reversing the trend of fish biodiversity loss in China.</p>","PeriodicalId":100680,"journal":{"name":"Integrative Conservation","volume":"3 4","pages":"294-311"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inc3.79","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Conservation","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inc3.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Globally, population declines of freshwater animals have been consistently greater than counterparts in other realms, making fresh waters hot spots of endangerment—particularly for larger species. Furthermore, biotas have become increasingly homogenized as invasions by non-native species proceed. These trends are particularly evident in Anthropocene China, where humans have profoundly altered freshwater ecosystems, with serious consequences for fishes and other aquatic vertebrates. Here, I examine the prospects for ‘bending the curve’ or reversing the trend of freshwater fish biodiversity loss in China, focusing on examples from the Yangtze and further south. Much of China's rich fish biodiversity is threatened, but a lack of contemporary surveys means that the conservation status of many species is uncertain, and ~40% of fishes are data deficient. Although nutrient pollution of major rivers has abated recently, poor water quality remains a concern, and the widespread proliferation of emerging contaminants and microplastics can be expected to have unpredictable (but detrimental) effects on the biota. Warmer temperatures will exacerbate the toxicity of micropollutants, and facilitate the spread of non-native species that have been supplanting native fishes. Extensive dam construction has fragmented major rivers, and has blocked fish migrations, preventing access to spawning sites and leading to population extirpations. Dams limit the ability of fishes to adjust their ranges to compensate for global warming, with increased drought severity and frequency under climate change representing an existential threat. Overexploitation will be reduced by the recent introduction of a 10-year fishing ban in the Yangtze basin, but dams, flow regulation, emerging contaminants and continuing habitat degradation will stymie any population recovery or significant recovery of biodiversity as a result of the ban. Furthermore, captive breeding and release programmes have failed to restore populations of threatened fishes because poor management of breeding stock has allowed inbreeding or hybridization leading to genetic pollution of wild populations. Other anthropogenic activities, such as large-scale mining of river sand on the Yangtze flood plain—exacerbated by the sediment-trapping effects of upstream dams—are persistent obstacles to reversing the trend of fish biodiversity loss in China.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信