Tobias Fleiter, Joshua Fragoso, Benjamin Lux, Şirin Alibaş, Khaled Al-Dabbas, Pia Manz, Felix Neuner, Bastian Weißenburger, Matthias Rehfeldt, Frank Sensfuß
{"title":"Hydrogen Infrastructure in the Future CO2-Neutral European Energy System—How Does the Demand for Hydrogen Affect the Need for Infrastructure?","authors":"Tobias Fleiter, Joshua Fragoso, Benjamin Lux, Şirin Alibaş, Khaled Al-Dabbas, Pia Manz, Felix Neuner, Bastian Weißenburger, Matthias Rehfeldt, Frank Sensfuß","doi":"10.1002/ente.202300981","DOIUrl":null,"url":null,"abstract":"<p>The fast rollout of hydrogen generation, transport, and storage infrastructure has become a top priority of the European Union and its member states. Planning hydrogen infrastructure requires a thorough understanding of the future role of hydrogen in the energy system. At the same time, there is still huge uncertainty about the future demand for hydrogen and its overall role. An energy systems analysis is conducted with high temporal and spatial as well as technological resolution under alternative demand scenarios. An energy system model is used to optimize the entire European energy system with hourly time resolution and high spatial consideration of renewable energy potentials. The hydrogen demand in the five scenarios ranges from about 700 TWh for mainly industrial uses to 2800 TWh in all sectors in the EU27 + UK by 2050. The results show that an integrated European hydrogen system is a robust element of the cost-optimal system design in all scenarios. This encompasses flexible electrolyzers at the most favorable wind and solar locations, long-distance hydrogen transport network, large-scale seasonal underground storage, and electricity generation for peak demand periods. Conclusions about the individual components are provided and high-resolution data on hydrogen demand are available for future research.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ente.202300981","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202300981","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The fast rollout of hydrogen generation, transport, and storage infrastructure has become a top priority of the European Union and its member states. Planning hydrogen infrastructure requires a thorough understanding of the future role of hydrogen in the energy system. At the same time, there is still huge uncertainty about the future demand for hydrogen and its overall role. An energy systems analysis is conducted with high temporal and spatial as well as technological resolution under alternative demand scenarios. An energy system model is used to optimize the entire European energy system with hourly time resolution and high spatial consideration of renewable energy potentials. The hydrogen demand in the five scenarios ranges from about 700 TWh for mainly industrial uses to 2800 TWh in all sectors in the EU27 + UK by 2050. The results show that an integrated European hydrogen system is a robust element of the cost-optimal system design in all scenarios. This encompasses flexible electrolyzers at the most favorable wind and solar locations, long-distance hydrogen transport network, large-scale seasonal underground storage, and electricity generation for peak demand periods. Conclusions about the individual components are provided and high-resolution data on hydrogen demand are available for future research.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.