{"title":"Coati optimized FOPID controller for non-isolated DC–DC converters in EV charging application","authors":"Piyush Sharma, Dheeraj Kumar Palwalia, Ashok Kumar Sharma, Neeraj Priyadarshi, Sanjeevikumar Padmanaban","doi":"10.1049/pel2.12798","DOIUrl":null,"url":null,"abstract":"<p>The transportation sector's shift from internal combustion engines to electric vehicles (EVs) has made enough charging facilities necessary. The converter's architecture has undergone several changes to provide the best possible charging for electric vehicles. For EV charging applications, both isolated and non-isolated converters are employed. The significant strain on switches and losses in the various converter topologies are among the main problems. To minimize these issues, the current-fed non-isolated DC–DC converter is proposed with fewer switching devices. The proposed converter design is validated for the EV charging application in the MATLAB/Simulink tool. Moreover, Coati optimized fractional order proportional integral derivative controller is proposed, which provides optimum switching signals for the converter based on the voltage input. Furthermore, the responses are realized for buck and boost modes of operations. It is verified that zero current switching and zero voltage switching are achieved under boost mode. The results analysis demonstrates that the proposed converter has a higher efficiency of 99.7% and 99.02% in buck and boost mode, respectively.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"17 16","pages":"2771-2784"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12798","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12798","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The transportation sector's shift from internal combustion engines to electric vehicles (EVs) has made enough charging facilities necessary. The converter's architecture has undergone several changes to provide the best possible charging for electric vehicles. For EV charging applications, both isolated and non-isolated converters are employed. The significant strain on switches and losses in the various converter topologies are among the main problems. To minimize these issues, the current-fed non-isolated DC–DC converter is proposed with fewer switching devices. The proposed converter design is validated for the EV charging application in the MATLAB/Simulink tool. Moreover, Coati optimized fractional order proportional integral derivative controller is proposed, which provides optimum switching signals for the converter based on the voltage input. Furthermore, the responses are realized for buck and boost modes of operations. It is verified that zero current switching and zero voltage switching are achieved under boost mode. The results analysis demonstrates that the proposed converter has a higher efficiency of 99.7% and 99.02% in buck and boost mode, respectively.
期刊介绍:
IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes:
Applications:
Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances.
Technologies:
Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies.
Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials.
Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems.
Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques.
Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material.
Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest.
Special Issues. Current Call for papers:
Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf