An improved approach for the evaluation of the environmental impact of nano-modified insulating oils in electrical transformers

IF 3.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ioannis Chronis, Chao Tang, Constantinos S. Psomopoulos
{"title":"An improved approach for the evaluation of the environmental impact of nano-modified insulating oils in electrical transformers","authors":"Ioannis Chronis,&nbsp;Chao Tang,&nbsp;Constantinos S. Psomopoulos","doi":"10.1049/nde2.12089","DOIUrl":null,"url":null,"abstract":"<p>Nano-modified electrical insulating fluids are a promising new family of insulating oils with enhanced characteristics. They can significantly improve many properties, such as fire point, breakdown voltage, partial discharge inception voltage and thermal conductivity etc. However, nanoparticles have raised concerns about the possible harm to human health and the ecosystems, but the environmental impact of nano-modified insulating oils is far more complicated than that. Following the recent research results on the stability of nano-modified particles, the authors introduce environmental aspects that have not attracted attention so far, such as the possible loss of stability of the insulating oil, mechanical erosion problems in parts of the electrical transformer and problems in recycling processes that may turn waste nano-modified insulating oils into an unwanted feed stock for recycling industries. An improved method for the environmental risk assessment (RA) of nano-modified insulating oils, based on an existing model for the RA of nanoparticles, is proposed. The authors reflect the complicated nature of the nanoliquids, mainly due to the stability of the element, which seems to have a paramount role on their environmental impact and is neglected by the current approach in RA.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"7 4","pages":"216-225"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12089","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Nano-modified electrical insulating fluids are a promising new family of insulating oils with enhanced characteristics. They can significantly improve many properties, such as fire point, breakdown voltage, partial discharge inception voltage and thermal conductivity etc. However, nanoparticles have raised concerns about the possible harm to human health and the ecosystems, but the environmental impact of nano-modified insulating oils is far more complicated than that. Following the recent research results on the stability of nano-modified particles, the authors introduce environmental aspects that have not attracted attention so far, such as the possible loss of stability of the insulating oil, mechanical erosion problems in parts of the electrical transformer and problems in recycling processes that may turn waste nano-modified insulating oils into an unwanted feed stock for recycling industries. An improved method for the environmental risk assessment (RA) of nano-modified insulating oils, based on an existing model for the RA of nanoparticles, is proposed. The authors reflect the complicated nature of the nanoliquids, mainly due to the stability of the element, which seems to have a paramount role on their environmental impact and is neglected by the current approach in RA.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Nanodielectrics
IET Nanodielectrics Materials Science-Materials Chemistry
CiteScore
5.60
自引率
3.70%
发文量
7
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信