{"title":"High-strength, electrically insulated industrial meta-aramid paper reinforced with polyethylene terephthalate microfibre pulp in a sandwich structure","authors":"Meijun Chen, Songjun Yao, Guobin Zhu, Mengyun Wu, Zhiying Li, Siwei Xiong, Shiwen Yang, Hua Wang, Liangbo Zhu, Luoxin Wang","doi":"10.1049/hve2.12474","DOIUrl":null,"url":null,"abstract":"<p>The weak interfacial strength and porous structure of the meso-aramid paper cause mechanical and insulating deficiencies. Enhancing density, regulating pore structure, and improving interfacial interactions of meso-aramid are crucial for promoting the performance of meso-aramid papers. A PMIA/polyethylene terephthalate (PET) composite paper was prepared using the wet method with meso-aramid short cut fibres (PMIA) and PET pulp as raw materials. The sandwich-structured PMIA/PET paper was achieved by covering PET microfiber non-wovens served as the surface layer while the PMIA/PET composite paper acted as the core layer. During the high-temperature hot pressing process, the PET pulp transformed into a viscous melt that coated on aramid fibres in between layers, forming a typical ‘reinforced concrete’ interface structure within the core layer of the PMIA/PET composite paper. The PET non-wovens on top and bottom surfaces were converted into a dense PET film that filled and covered the holes and defects in the PMIA/PET composite paper. This unique structure enabled the sandwich-structured PMIA/PET composite paper to exhibit excellent tensile strength (80.41 N/cm) and breakdown strength (56.35 kV/mm), surpassing most reported performances of meso-aramid papers in literature. This work not only provides novel insights for preparing high-performance meso-aramid papers, but also shows potential applications for other materials and structures.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"9 6","pages":"1402-1413"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12474","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12474","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The weak interfacial strength and porous structure of the meso-aramid paper cause mechanical and insulating deficiencies. Enhancing density, regulating pore structure, and improving interfacial interactions of meso-aramid are crucial for promoting the performance of meso-aramid papers. A PMIA/polyethylene terephthalate (PET) composite paper was prepared using the wet method with meso-aramid short cut fibres (PMIA) and PET pulp as raw materials. The sandwich-structured PMIA/PET paper was achieved by covering PET microfiber non-wovens served as the surface layer while the PMIA/PET composite paper acted as the core layer. During the high-temperature hot pressing process, the PET pulp transformed into a viscous melt that coated on aramid fibres in between layers, forming a typical ‘reinforced concrete’ interface structure within the core layer of the PMIA/PET composite paper. The PET non-wovens on top and bottom surfaces were converted into a dense PET film that filled and covered the holes and defects in the PMIA/PET composite paper. This unique structure enabled the sandwich-structured PMIA/PET composite paper to exhibit excellent tensile strength (80.41 N/cm) and breakdown strength (56.35 kV/mm), surpassing most reported performances of meso-aramid papers in literature. This work not only provides novel insights for preparing high-performance meso-aramid papers, but also shows potential applications for other materials and structures.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf