{"title":"Efficient DC–DC power converters for fuel-cell electric vehicle: A qualitative assessment","authors":"Sunil Kumar, Sulayman Jammeh, Rodrigue Samb, Amar Singh","doi":"10.1049/pel2.12819","DOIUrl":null,"url":null,"abstract":"<p>The general shift in vehicle propulsion systems from internal combustion engine (ICE) power-train towards electric power-train has led to the development of energy-efficient and compact electric drivetrain for next-generation automobiles such as fuel cell electric vehicles (FCEV). As opposed to ICE, fuel cell vehicles operate with higher powertrain efficiency and are combustion-less since the only byproduct is water. In light of developmental and environmental goals, fuel cell technology is consequently seen as the evolutionary step in vehicle technology. The electric drivetrain for FCEV consists of power converters, motors, and associated control systems. Direct connection of the fuel cell stack to the DC bus and other system components is inefficient. As a result, it becomes essential to regulate the high-voltage DC bus connecting the fuel cell stack to other system elements like the motor and energy storage devices. Therefore, DC–DC converters are designed for main power unit to provide the desired and regulated voltage to the DC bus making the system efficient and reliable. High-voltage step-up DC–DC converters have undergone extensive research in recent years, which has increased their functionality, performance, and efficiency for FCEV. A survey of these converters, and evaluation of their performance and index parameters, could be very helpful in designing efficient converters and for the development of vehicular electric power-train. This paper reviews the literature on electric drive-train, fuel cell systems, and different DC–DC converter topologies for fuel cell electric vehicles. This study aims to conduct a comprehensive assessment of the existing topologies, their applications, and comparative aspects, as well as works that haven't been covered in earlier reviews.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"17 16","pages":"3166-3204"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12819","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12819","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The general shift in vehicle propulsion systems from internal combustion engine (ICE) power-train towards electric power-train has led to the development of energy-efficient and compact electric drivetrain for next-generation automobiles such as fuel cell electric vehicles (FCEV). As opposed to ICE, fuel cell vehicles operate with higher powertrain efficiency and are combustion-less since the only byproduct is water. In light of developmental and environmental goals, fuel cell technology is consequently seen as the evolutionary step in vehicle technology. The electric drivetrain for FCEV consists of power converters, motors, and associated control systems. Direct connection of the fuel cell stack to the DC bus and other system components is inefficient. As a result, it becomes essential to regulate the high-voltage DC bus connecting the fuel cell stack to other system elements like the motor and energy storage devices. Therefore, DC–DC converters are designed for main power unit to provide the desired and regulated voltage to the DC bus making the system efficient and reliable. High-voltage step-up DC–DC converters have undergone extensive research in recent years, which has increased their functionality, performance, and efficiency for FCEV. A survey of these converters, and evaluation of their performance and index parameters, could be very helpful in designing efficient converters and for the development of vehicular electric power-train. This paper reviews the literature on electric drive-train, fuel cell systems, and different DC–DC converter topologies for fuel cell electric vehicles. This study aims to conduct a comprehensive assessment of the existing topologies, their applications, and comparative aspects, as well as works that haven't been covered in earlier reviews.
期刊介绍:
IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes:
Applications:
Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances.
Technologies:
Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies.
Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials.
Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems.
Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques.
Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material.
Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest.
Special Issues. Current Call for papers:
Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf