{"title":"Classification with electromagnetic waves","authors":"Ergun Simsek, Harish Reddy Manyam","doi":"10.1049/mia2.12522","DOIUrl":null,"url":null,"abstract":"<p>The integration of neural networks and machine learning techniques has ushered in a revolution in various fields, including electromagnetic inversion, geophysical exploration, and microwave imaging. While these techniques have significantly improved image reconstruction and the resolution of complex inverse scattering problems, this paper explores a different question: <i>Can near-field electromagnetic waves be harnessed for object classification?</i> To answer this question, we first create a dataset based on the MNIST dataset, where we transform the grayscale pixel values into relative electrical permittivity values to form scatterers and calculate the electromagnetic waves scattered from these objects using a 2D electromagnetic finite-difference frequency-domain solver. Then, we train various machine learning models with this dataset to classify the objects. When we compare the classification accuracy and efficiency of these models, we observe that the neural networks outperform others, achieving a 90% classification accuracy solely from the data without a need for projecting the input data into a latent space. The impacts of the training dataset size, the number of antennas, and the location of antennas on the accuracy and time spent during training are also investigated. These results demonstrate the potential for classifying objects with near-field electromagnetic waves in a simple setup and lay the groundwork for further research in this exciting direction.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"18 12","pages":"898-910"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12522","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12522","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of neural networks and machine learning techniques has ushered in a revolution in various fields, including electromagnetic inversion, geophysical exploration, and microwave imaging. While these techniques have significantly improved image reconstruction and the resolution of complex inverse scattering problems, this paper explores a different question: Can near-field electromagnetic waves be harnessed for object classification? To answer this question, we first create a dataset based on the MNIST dataset, where we transform the grayscale pixel values into relative electrical permittivity values to form scatterers and calculate the electromagnetic waves scattered from these objects using a 2D electromagnetic finite-difference frequency-domain solver. Then, we train various machine learning models with this dataset to classify the objects. When we compare the classification accuracy and efficiency of these models, we observe that the neural networks outperform others, achieving a 90% classification accuracy solely from the data without a need for projecting the input data into a latent space. The impacts of the training dataset size, the number of antennas, and the location of antennas on the accuracy and time spent during training are also investigated. These results demonstrate the potential for classifying objects with near-field electromagnetic waves in a simple setup and lay the groundwork for further research in this exciting direction.
期刊介绍:
Topics include, but are not limited to:
Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques.
Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas.
Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms.
Radiowave propagation at all frequencies and environments.
Current Special Issue. Call for papers:
Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf