Incorporation of software in the life cycle assessment of an ICT service: A case study of an ICT service for energy efficiency in the transport sector

IF 4.9 3区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL
Bryan Lopez Londoño, Shoaib Azizi, Göran Finnveden
{"title":"Incorporation of software in the life cycle assessment of an ICT service: A case study of an ICT service for energy efficiency in the transport sector","authors":"Bryan Lopez Londoño,&nbsp;Shoaib Azizi,&nbsp;Göran Finnveden","doi":"10.1111/jiec.13570","DOIUrl":null,"url":null,"abstract":"<p>Information communication and technology (ICT) services and solutions can improve resource efficiency in a variety of sector, but also result in direct environmental impacts. This study assesses the direct environmental impacts of an ICT service that improves vehicle fuel efficiency using a cradle-to-grave life cycle assessment (LCA). This is one of the first studies to examine the entire life cycle of an ICT service from development to use and maintenance, with a focus on software—an aspect that is typically neglected in previous studies. The results suggest that software development and maintenance and the use of in-vehicle communicators for data transmission have the largest environmental impacts across multiple categories. Deployed across a fleet of 150,000 vehicles over 5 years, we estimate that the ICT service is responsible for 174 tCO<sub>2</sub>e. However, this is negligible compared with the total emissions of the fleet and the potential savings from the service, given a single diesel vehicle in this fleet emits around 130 tCO<sub>2</sub>e over the same period. We explore several scenarios to reduce the footprint of the ICT service. The largest potential reduction of around one-third is achieved by replacing in-house servers with cloud computing in a data center located in a region with low-carbon electricity. The study demonstrates how LCA can be used to assess the environmental impacts of ICT services and the importance of considering software in these assessments.</p>","PeriodicalId":16050,"journal":{"name":"Journal of Industrial Ecology","volume":"28 6","pages":"1965-1978"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jiec.13570","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jiec.13570","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Information communication and technology (ICT) services and solutions can improve resource efficiency in a variety of sector, but also result in direct environmental impacts. This study assesses the direct environmental impacts of an ICT service that improves vehicle fuel efficiency using a cradle-to-grave life cycle assessment (LCA). This is one of the first studies to examine the entire life cycle of an ICT service from development to use and maintenance, with a focus on software—an aspect that is typically neglected in previous studies. The results suggest that software development and maintenance and the use of in-vehicle communicators for data transmission have the largest environmental impacts across multiple categories. Deployed across a fleet of 150,000 vehicles over 5 years, we estimate that the ICT service is responsible for 174 tCO2e. However, this is negligible compared with the total emissions of the fleet and the potential savings from the service, given a single diesel vehicle in this fleet emits around 130 tCO2e over the same period. We explore several scenarios to reduce the footprint of the ICT service. The largest potential reduction of around one-third is achieved by replacing in-house servers with cloud computing in a data center located in a region with low-carbon electricity. The study demonstrates how LCA can be used to assess the environmental impacts of ICT services and the importance of considering software in these assessments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Industrial Ecology
Journal of Industrial Ecology 环境科学-环境科学
CiteScore
11.60
自引率
8.50%
发文量
117
审稿时长
12-24 weeks
期刊介绍: The Journal of Industrial Ecology addresses a series of related topics: material and energy flows studies (''industrial metabolism'') technological change dematerialization and decarbonization life cycle planning, design and assessment design for the environment extended producer responsibility (''product stewardship'') eco-industrial parks (''industrial symbiosis'') product-oriented environmental policy eco-efficiency Journal of Industrial Ecology is open to and encourages submissions that are interdisciplinary in approach. In addition to more formal academic papers, the journal seeks to provide a forum for continuing exchange of information and opinions through contributions from scholars, environmental managers, policymakers, advocates and others involved in environmental science, management and policy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信