The environmental costs of clean cycles: Quantitative analysis for the case of PVC window profile recycling in Germany

IF 4.9 3区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL
Sarah Schmidt, Thomas Gibon, Tomás Navarrete Gutiérrez, Katrina-Magdalena Lindemann, David Laner
{"title":"The environmental costs of clean cycles: Quantitative analysis for the case of PVC window profile recycling in Germany","authors":"Sarah Schmidt,&nbsp;Thomas Gibon,&nbsp;Tomás Navarrete Gutiérrez,&nbsp;Katrina-Magdalena Lindemann,&nbsp;David Laner","doi":"10.1111/jiec.13559","DOIUrl":null,"url":null,"abstract":"<p>Recycling schemes for long-lived products are challenged by the presence of “legacy substances,” which have been used in production in the past, but are nowadays classified as substances of concern. This study quantitatively evaluates the trade-offs between phasing out legacy substances, increasing circularity levels, and reducing life cycle impacts of polyvinylchloride (PVC) window profiles recycling in Germany based on a comprehensive dynamic material and substance flow analysis coupled with a prospective life cycle assessment. Scenario results indicate that although lead had been phased out in virgin PVC by 2015, lead concentrations in end-of-life PVC window profiles will remain above 0.3% until the end of the century without a restriction of lead in recycled PVC and will be by factor 3–5 higher compared to a restriction as stipulated by EU 2023/923. However, the latter is associated with lower recycling rates and higher life cycle environmental impacts of PVC window frame waste management, which cannot be fully compensated by the introduction of new waste treatment pathways using currently available technologies. The study serves to introduce a new comprehensive modeling framework, which allows for the consideration of trade-offs between substance, material, and environmental impact dimensions as a basis for discussing and developing sustainable waste management strategies.</p>","PeriodicalId":16050,"journal":{"name":"Journal of Industrial Ecology","volume":"28 6","pages":"1755-1770"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jiec.13559","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jiec.13559","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recycling schemes for long-lived products are challenged by the presence of “legacy substances,” which have been used in production in the past, but are nowadays classified as substances of concern. This study quantitatively evaluates the trade-offs between phasing out legacy substances, increasing circularity levels, and reducing life cycle impacts of polyvinylchloride (PVC) window profiles recycling in Germany based on a comprehensive dynamic material and substance flow analysis coupled with a prospective life cycle assessment. Scenario results indicate that although lead had been phased out in virgin PVC by 2015, lead concentrations in end-of-life PVC window profiles will remain above 0.3% until the end of the century without a restriction of lead in recycled PVC and will be by factor 3–5 higher compared to a restriction as stipulated by EU 2023/923. However, the latter is associated with lower recycling rates and higher life cycle environmental impacts of PVC window frame waste management, which cannot be fully compensated by the introduction of new waste treatment pathways using currently available technologies. The study serves to introduce a new comprehensive modeling framework, which allows for the consideration of trade-offs between substance, material, and environmental impact dimensions as a basis for discussing and developing sustainable waste management strategies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Industrial Ecology
Journal of Industrial Ecology 环境科学-环境科学
CiteScore
11.60
自引率
8.50%
发文量
117
审稿时长
12-24 weeks
期刊介绍: The Journal of Industrial Ecology addresses a series of related topics: material and energy flows studies (''industrial metabolism'') technological change dematerialization and decarbonization life cycle planning, design and assessment design for the environment extended producer responsibility (''product stewardship'') eco-industrial parks (''industrial symbiosis'') product-oriented environmental policy eco-efficiency Journal of Industrial Ecology is open to and encourages submissions that are interdisciplinary in approach. In addition to more formal academic papers, the journal seeks to provide a forum for continuing exchange of information and opinions through contributions from scholars, environmental managers, policymakers, advocates and others involved in environmental science, management and policy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信