Dual-layer model predictive control-based scheduling of integrated electricity-hydrogen-heat microgrid

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS
Pengfei Han, Xiaoyuan Xu, Zheng Yan, Zhenfei Tan
{"title":"Dual-layer model predictive control-based scheduling of integrated electricity-hydrogen-heat microgrid","authors":"Pengfei Han,&nbsp;Xiaoyuan Xu,&nbsp;Zheng Yan,&nbsp;Zhenfei Tan","doi":"10.1049/rpg2.13172","DOIUrl":null,"url":null,"abstract":"<p>As a newly widely used energy source, hydrogen has not yet been integrated with other energies efficiently, leading to low energy efficiency and high operating costs. This paper develops a novel cooperation model to coordinate electricity, hydrogen, and district heating systems and reduce operating costs. First, the mathematical model of electricity, hydrogen, and district heating systems coupled by electrolysers is established, and the bidirectional heat exchange (BHE) between hydrogen production and district heating networks (DHNs) is proposed. Then, a dual-layer model predictive control (DLMPC) method is proposed for the integrated electricity, hydrogen, and heating microgrid (IEHHM) scheduling. The upper layer aims to deal with the hourly power variation and determine the IEHHM operation schedules, and the lower layer revises the power of electrolysers and combined heat and power (CHP) plants to follow the real-time power variation of renewable energy generations (REGs). Simulation results show that: (1) BHE improves the thermal dynamics of electrolysers and DHNs, enhancing operational flexibility; (2) The DLMPC method enables timely adjustments to the dispatch schedule, reducing operating costs by responding to multi-time-scale power variations from REGs.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 S1","pages":"4638-4649"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13172","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13172","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

As a newly widely used energy source, hydrogen has not yet been integrated with other energies efficiently, leading to low energy efficiency and high operating costs. This paper develops a novel cooperation model to coordinate electricity, hydrogen, and district heating systems and reduce operating costs. First, the mathematical model of electricity, hydrogen, and district heating systems coupled by electrolysers is established, and the bidirectional heat exchange (BHE) between hydrogen production and district heating networks (DHNs) is proposed. Then, a dual-layer model predictive control (DLMPC) method is proposed for the integrated electricity, hydrogen, and heating microgrid (IEHHM) scheduling. The upper layer aims to deal with the hourly power variation and determine the IEHHM operation schedules, and the lower layer revises the power of electrolysers and combined heat and power (CHP) plants to follow the real-time power variation of renewable energy generations (REGs). Simulation results show that: (1) BHE improves the thermal dynamics of electrolysers and DHNs, enhancing operational flexibility; (2) The DLMPC method enables timely adjustments to the dispatch schedule, reducing operating costs by responding to multi-time-scale power variations from REGs.

Abstract Image

基于双层模型预测控制的电-氢-热一体化微网调度
氢作为一种新的广泛应用的能源,尚未与其他能源进行有效的整合,导致能源效率低,运行成本高。本文提出了一种新的合作模式来协调电力、氢和区域供热系统,以降低运行成本。首先,建立了由电解槽耦合的电力、氢气和区域供热系统的数学模型,并提出了氢气生产与区域供热网络之间的双向热交换(BHE)。然后,针对电、氢、热一体化微电网调度问题,提出了一种双层模型预测控制(DLMPC)方法。上层处理小时功率变化,确定IEHHM运行计划,下层根据可再生能源发电机组(reg)的实时功率变化对电解槽和热电联产(CHP)电厂的功率进行修正。仿真结果表明:(1)BHE改善了电解槽和dhn的热动力学,提高了操作灵活性;(2) DLMPC方法能够及时调整调度计划,通过响应REGs的多时间尺度功率变化来降低运行成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Renewable Power Generation
IET Renewable Power Generation 工程技术-工程:电子与电气
CiteScore
6.80
自引率
11.50%
发文量
268
审稿时长
6.6 months
期刊介绍: IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal. Specific technology areas covered by the journal include: Wind power technology and systems Photovoltaics Solar thermal power generation Geothermal energy Fuel cells Wave power Marine current energy Biomass conversion and power generation What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small. The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged. The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced. Current Special Issue. Call for papers: Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信