Valarmathi Mahendran, Dr. Quang Thang Trinh, Xie Zhangyue, Dr. Umesh Jonnalagadda, Prof. Tim Gould, Prof. Nam-Trung Nguyen, Prof. James Kwan, Prof. Tej S. Choksi, Prof. Wen Liu, Prof. Sabine Valange, Dr. François Jérôme, Dr. Prince Nana Amaniampong
{"title":"Titelbild: Localized Oxidative Catalytic Reactions Triggered by Cavitation Bubbles Confinement on Copper Oxide Microstructured Particles. (Angew. Chem. 6/2025)","authors":"Valarmathi Mahendran, Dr. Quang Thang Trinh, Xie Zhangyue, Dr. Umesh Jonnalagadda, Prof. Tim Gould, Prof. Nam-Trung Nguyen, Prof. James Kwan, Prof. Tej S. Choksi, Prof. Wen Liu, Prof. Sabine Valange, Dr. François Jérôme, Dr. Prince Nana Amaniampong","doi":"10.1002/ange.202424920","DOIUrl":null,"url":null,"abstract":"<p>Cavitation bubbles confinement and collapse on catalyst surfaces facilitates selective and localised acoustic energy transfer directly to the catalyst surface, minimising undesired dissipation of acoustic energy into the bulk liquid solution while demonstrating superior cavitation properties at lower acoustic pressure amplitudes towards catalytic oxidative reactions. The details of this study are reported by Prince Nana Amaniampong in their Research Article (e202416543).\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202424920","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202424920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cavitation bubbles confinement and collapse on catalyst surfaces facilitates selective and localised acoustic energy transfer directly to the catalyst surface, minimising undesired dissipation of acoustic energy into the bulk liquid solution while demonstrating superior cavitation properties at lower acoustic pressure amplitudes towards catalytic oxidative reactions. The details of this study are reported by Prince Nana Amaniampong in their Research Article (e202416543).