Deniz Turkay, Nicolas Blondiaux, Matthieu Boccard, Kerem Artuk, Daniel Anthony Jacobs, Julien Gay, Quentin Jeangros, Christophe Ballif, Christian Michael Wolff
{"title":"Self-Aligned Silica Nanoparticle Rear Reflectors for Single-Junction Si and Perovskite-Si Tandem Solar Cells","authors":"Deniz Turkay, Nicolas Blondiaux, Matthieu Boccard, Kerem Artuk, Daniel Anthony Jacobs, Julien Gay, Quentin Jeangros, Christophe Ballif, Christian Michael Wolff","doi":"10.1002/solr.202400704","DOIUrl":null,"url":null,"abstract":"<p>Infrared light management is crucial to maximize the optical performance of crystalline Si-based single junction and tandem solar cells. For this end, a low refractive index dielectric is typically inserted under the rear metal and an electrical contact is obtained locally through the dielectric. However, the realization of such an architecture can require numerous fabrication steps that are time and resource intensive. Herein, a simple approach is proposed in which commercially available, low-cost SiO<sub>2</sub> nanoparticles (NPs) are spin coated as rear reflectors on pyramid-textured Si, leaving the pyramid tips locally exposed for direct contact by an electrode without additional patterning. In Si heterojunction solar cells, complementing a 40 nm-thick indium tin oxide (ITO) layer with the SiO<sub>2</sub>-NPs yields a gain of 0.3 mA cm<sup>−2</sup> in short-circuit current density compared to that obtained with a bare, 100 nm-thick ITO layer. Combined with reduced electrical losses, power conversion efficiency gains of 0.5%<sub>abs</sub> to 0.3%<sub>abs</sub> for single junction Si and perovskite-Si tandem cells are demonstrated, respectively. Finally, it is shown that the NPs can also be processed on large areas via blade coating and that the process can be further simplified by a change in the fabrication sequence of the SiO<sub>2</sub>-NP and ITO layers.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 3","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400704","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Infrared light management is crucial to maximize the optical performance of crystalline Si-based single junction and tandem solar cells. For this end, a low refractive index dielectric is typically inserted under the rear metal and an electrical contact is obtained locally through the dielectric. However, the realization of such an architecture can require numerous fabrication steps that are time and resource intensive. Herein, a simple approach is proposed in which commercially available, low-cost SiO2 nanoparticles (NPs) are spin coated as rear reflectors on pyramid-textured Si, leaving the pyramid tips locally exposed for direct contact by an electrode without additional patterning. In Si heterojunction solar cells, complementing a 40 nm-thick indium tin oxide (ITO) layer with the SiO2-NPs yields a gain of 0.3 mA cm−2 in short-circuit current density compared to that obtained with a bare, 100 nm-thick ITO layer. Combined with reduced electrical losses, power conversion efficiency gains of 0.5%abs to 0.3%abs for single junction Si and perovskite-Si tandem cells are demonstrated, respectively. Finally, it is shown that the NPs can also be processed on large areas via blade coating and that the process can be further simplified by a change in the fabrication sequence of the SiO2-NP and ITO layers.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.