Khalid Sifulla Noor, Most. Momtahina Bani, A. H. M. Iftekharul Ferdous
{"title":"Design and fabrication of PCF-based terahertz sensor for breast cancer cell detection","authors":"Khalid Sifulla Noor, Most. Momtahina Bani, A. H. M. Iftekharul Ferdous","doi":"10.1049/wss2.12098","DOIUrl":null,"url":null,"abstract":"<p>Breast cancer is a type of cancer that is common in women worldwide, which emphasises its significance in identification with preventative treatment methods. The invented Photonic Crystal Fibre (PCF) exhibits outstanding performance in detecting Breast Cancer. The suggested model of the authors includes Hybrid layout within clad surface alongside Square Core. Introduced PCF detector exhibits max Relative Sensitivity (RS) of 96.82% as well 96.74% for breast cancer cell MCF-7 as well MDA-MB-231 correspondingly. The authors also investigated the Confinement Loss of 1.642 × 10<sup>−10</sup> dB/m, 2.461 × 10<sup>−10</sup> dB/m with Effective Material Loss of 0.0473, 0.0565 cm<sup>−1</sup> for the mentioned cells. Increased outcomes, customised therapy, plus quick action are made possible by swift identification in breast carcinoma. Timely malignancy detection reduces requirements to severe therapy by enabling simpler medicines. Additionally, making continuous illness detection easier, improving patient treatment. Furthermore, reliable evaluation contributes for investigating advancements that improve worldwide recognition as well as therapy alternatives. The introduced PCF Perhaps crucial in quick identification of these deadly cells as it has an extraordinary sensing ability. In conclusion, it has numerous possibilities in the healthcare sector.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":"14 6","pages":"493-506"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12098","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is a type of cancer that is common in women worldwide, which emphasises its significance in identification with preventative treatment methods. The invented Photonic Crystal Fibre (PCF) exhibits outstanding performance in detecting Breast Cancer. The suggested model of the authors includes Hybrid layout within clad surface alongside Square Core. Introduced PCF detector exhibits max Relative Sensitivity (RS) of 96.82% as well 96.74% for breast cancer cell MCF-7 as well MDA-MB-231 correspondingly. The authors also investigated the Confinement Loss of 1.642 × 10−10 dB/m, 2.461 × 10−10 dB/m with Effective Material Loss of 0.0473, 0.0565 cm−1 for the mentioned cells. Increased outcomes, customised therapy, plus quick action are made possible by swift identification in breast carcinoma. Timely malignancy detection reduces requirements to severe therapy by enabling simpler medicines. Additionally, making continuous illness detection easier, improving patient treatment. Furthermore, reliable evaluation contributes for investigating advancements that improve worldwide recognition as well as therapy alternatives. The introduced PCF Perhaps crucial in quick identification of these deadly cells as it has an extraordinary sensing ability. In conclusion, it has numerous possibilities in the healthcare sector.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.