Le Li, Shuo Tan, Yunpeng Liu, Haoyi Li, Kezhi Xu, Guancheng Zhen, Xiaoxuan Yin, Tianfang Zhao, Wenhua Wu, Lei Yang
{"title":"Partial discharge characteristics of syntactic foam filled with hollow polymer microspheres","authors":"Le Li, Shuo Tan, Yunpeng Liu, Haoyi Li, Kezhi Xu, Guancheng Zhen, Xiaoxuan Yin, Tianfang Zhao, Wenhua Wu, Lei Yang","doi":"10.1049/hve2.12505","DOIUrl":null,"url":null,"abstract":"<p>Syntactic foam materials, due to their advantages of low densities, low water absorption, and high dielectric strengths, have significant application potential in the cores of post insulators. However, because of a large number of microbubble structures within the syntactic foam, it might decrease the partial discharge inception voltage. It is necessary to investigate the partial discharge characteristics of the foam to assess the feasibility of its internal insulation application. In this study, the syntactic foam samples with four different microsphere contents (0%–2%) were prepared, and the physical structures of the materials were characterised by using Fourier transform infrared spectroscopy, scanning electron microscopy, and three-dimensional computed tomography. Subsequently, finite element simulations of the electric field were performed to analyse the influence of the microsphere content and distribution on the internal electric field of the syntactic foam. The results suggested that both the microsphere content and distribution affected the partial discharge activity. When the microsphere content was low, the doping of microspheres essentially meant that more air gap defects were present, leading to a decrease in the partial discharge performance. However, when the microsphere content was high, the microspheres were distributed in a dense and orderly manner, improving the field concentration phenomenon and hence inhibiting the partial discharge to a certain extent. In conclusion, the findings of this study provide a data reference and theoretical support for the application of syntactic foam in the cores of composite post insulators.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"9 6","pages":"1322-1335"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12505","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12505","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Syntactic foam materials, due to their advantages of low densities, low water absorption, and high dielectric strengths, have significant application potential in the cores of post insulators. However, because of a large number of microbubble structures within the syntactic foam, it might decrease the partial discharge inception voltage. It is necessary to investigate the partial discharge characteristics of the foam to assess the feasibility of its internal insulation application. In this study, the syntactic foam samples with four different microsphere contents (0%–2%) were prepared, and the physical structures of the materials were characterised by using Fourier transform infrared spectroscopy, scanning electron microscopy, and three-dimensional computed tomography. Subsequently, finite element simulations of the electric field were performed to analyse the influence of the microsphere content and distribution on the internal electric field of the syntactic foam. The results suggested that both the microsphere content and distribution affected the partial discharge activity. When the microsphere content was low, the doping of microspheres essentially meant that more air gap defects were present, leading to a decrease in the partial discharge performance. However, when the microsphere content was high, the microspheres were distributed in a dense and orderly manner, improving the field concentration phenomenon and hence inhibiting the partial discharge to a certain extent. In conclusion, the findings of this study provide a data reference and theoretical support for the application of syntactic foam in the cores of composite post insulators.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf