Junhuan Wei, Qin Wang, Buyun Dai, Yan Cai, Dongbo Tu
{"title":"An Item Response Tree Model for Items with Multiple-Choice and Constructed-Response Parts","authors":"Junhuan Wei, Qin Wang, Buyun Dai, Yan Cai, Dongbo Tu","doi":"10.1111/jedm.12414","DOIUrl":null,"url":null,"abstract":"<p>Traditional IRT and IRTree models are not appropriate for analyzing the item that simultaneously consists of multiple-choice (MC) task and constructed-response (CR) task in one item. To address this issue, this study proposed an item response tree model (called as IRTree-MR) to accommodate items that contain different response types at different steps and multiple different cognitive processes behind each score to effectively investigate the cognitive process and achieve a more accurate evaluation of examinees. The proposed model employs appropriate processing function for each task and allows multiple paths to an observed outcome. The simulation studies were conducted to evaluate the performance of the proposed IRTree-MR, and results show the proposed model outperforms the traditional IRT model in terms of parameters recovery and model-fit. Moreover, an empirical study was carried out to verify the advantages of the proposed model.</p>","PeriodicalId":47871,"journal":{"name":"Journal of Educational Measurement","volume":"61 4","pages":"634-655"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Measurement","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jedm.12414","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional IRT and IRTree models are not appropriate for analyzing the item that simultaneously consists of multiple-choice (MC) task and constructed-response (CR) task in one item. To address this issue, this study proposed an item response tree model (called as IRTree-MR) to accommodate items that contain different response types at different steps and multiple different cognitive processes behind each score to effectively investigate the cognitive process and achieve a more accurate evaluation of examinees. The proposed model employs appropriate processing function for each task and allows multiple paths to an observed outcome. The simulation studies were conducted to evaluate the performance of the proposed IRTree-MR, and results show the proposed model outperforms the traditional IRT model in terms of parameters recovery and model-fit. Moreover, an empirical study was carried out to verify the advantages of the proposed model.
期刊介绍:
The Journal of Educational Measurement (JEM) publishes original measurement research, provides reviews of measurement publications, and reports on innovative measurement applications. The topics addressed will interest those concerned with the practice of measurement in field settings, as well as be of interest to measurement theorists. In addition to presenting new contributions to measurement theory and practice, JEM also serves as a vehicle for improving educational measurement applications in a variety of settings.