Impact of Microwave Exposure on Cynomolgus Monkeys: EEG and ECG Analysis

IF 1.8 3区 生物学 Q3 BIOLOGY
Lizhen Ma, Nan Qiao, Yong Zou, Haoyu Wang, Yuchen Wang, Weijia Zhi, Xuelong Zhao, Xinping Xu, Mingzhao Zhang, Zhongwu Lin, Xiangjun Hu, Lifeng Wang
{"title":"Impact of Microwave Exposure on Cynomolgus Monkeys: EEG and ECG Analysis","authors":"Lizhen Ma,&nbsp;Nan Qiao,&nbsp;Yong Zou,&nbsp;Haoyu Wang,&nbsp;Yuchen Wang,&nbsp;Weijia Zhi,&nbsp;Xuelong Zhao,&nbsp;Xinping Xu,&nbsp;Mingzhao Zhang,&nbsp;Zhongwu Lin,&nbsp;Xiangjun Hu,&nbsp;Lifeng Wang","doi":"10.1002/bem.70000","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The annual increase of microwave exposure in human environments continues to fuel debates regarding its potential health impacts. This study monitored the EEG and ECG responses of three Cynomolgus monkeys before and at 0, 3, 7, 14, and 30 days after exposure to 50 mW/cm² microwave radiation for 15 min. The findings revealed no significant differences in the power spectral densities (PSDs) of the whole brain, frontal, and temporal lobes across various frequency bands (δ, θ, α, β, low-γ, and high-γ) immediately and up to 30 days postexposure. Notable alterations were observed primarily at 14 days in the PSDs of the parietal lobe, prefrontal cortex, central zone, and occipital lobe, particularly in the θ and α bands. By Day 30, these values returned to normal ranges. ECG alterations were characterized by changes in T-wave shape and amplitude. One monkey exhibited bidirectional spikes at 7 and 14 days that normalized by Day 30. Another showed similar patterns with reduced amplitude, and a third monkey displayed a towering forward wave at 14 days that persisted at 30 days. In conclusion, the administration of L-band microwave radiation at the specified dose did not result in immediate alterations to EEG and ECG, but it induced transient modifications in brain electrical activity and normalized after 30 days, which contributed to evaluate the health implications of microwave exposure in humans.</p></div>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bem.70000","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The annual increase of microwave exposure in human environments continues to fuel debates regarding its potential health impacts. This study monitored the EEG and ECG responses of three Cynomolgus monkeys before and at 0, 3, 7, 14, and 30 days after exposure to 50 mW/cm² microwave radiation for 15 min. The findings revealed no significant differences in the power spectral densities (PSDs) of the whole brain, frontal, and temporal lobes across various frequency bands (δ, θ, α, β, low-γ, and high-γ) immediately and up to 30 days postexposure. Notable alterations were observed primarily at 14 days in the PSDs of the parietal lobe, prefrontal cortex, central zone, and occipital lobe, particularly in the θ and α bands. By Day 30, these values returned to normal ranges. ECG alterations were characterized by changes in T-wave shape and amplitude. One monkey exhibited bidirectional spikes at 7 and 14 days that normalized by Day 30. Another showed similar patterns with reduced amplitude, and a third monkey displayed a towering forward wave at 14 days that persisted at 30 days. In conclusion, the administration of L-band microwave radiation at the specified dose did not result in immediate alterations to EEG and ECG, but it induced transient modifications in brain electrical activity and normalized after 30 days, which contributed to evaluate the health implications of microwave exposure in humans.

微波暴露对食蟹猴的影响:脑电图和心电图分析
人类环境中微波暴露量的逐年增加继续引发有关其潜在健康影响的辩论。本研究监测了三只食蟹猴在50 mW/cm²微波辐射15分钟后,在0、3、7、14和30天的脑电图和心电图反应。研究结果显示,暴露后立即和长达30天,全脑、额叶和颞叶在不同频段(δ、θ、α、β、低γ和高γ)的功率谱密度(psd)没有显著差异。在第14天,观察到顶叶、前额叶皮层、中央区和枕叶的psd发生了显著的变化,特别是在θ和α波段。到第30天,这些值恢复到正常范围。心电图改变以t波形态和幅度变化为特征。一只猴子在第7天和第14天表现出双向尖峰,到第30天正常化。另一只猴子表现出类似的模式,但振幅有所降低,第三只猴子在第14天表现出高耸的向前波,并持续到第30天。综上所述,特定剂量的l波段微波辐射不会导致脑电图和心电图的立即改变,但会引起脑电活动的短暂改变,并在30天后恢复正常,这有助于评估人类微波暴露对健康的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioelectromagnetics
Bioelectromagnetics 生物-生物物理
CiteScore
4.60
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信