{"title":"Secure and efficient trust enabled routing in mobile ad hoc network using game theory and grey wolf optimisation techniques","authors":"Ujwala Ravale, Gautam M. Borkar","doi":"10.1049/wss2.12095","DOIUrl":null,"url":null,"abstract":"<p>Mobile Ad hoc Networks (MANETs) are crucial wireless networks for military, corporate, and emergency use, yet they are vulnerable to disruptions from malicious nodes. The presence of malicious nodes can lead to message transmission and routing disorganisation, and network performance is effectively compromised. Game theory-based fuzzy secure clustering (GTFSC) improves performance metrics in low-scale and high-scale networks. This protocol's novel ability to dynamically scale performance measures as nodes expand improves efficiency and adaptability. While improving performance metrics, the proposed algorithm also efficiently identifies malicious nodes and re-routes the transmission, excluding the found malicious nodes. For any MANET system, secure and successful data transmission is paramount. The proposed protocol integrates various algorithms to fulfil its aim of customised EGT, GWO, and fuzzy clustering. Black hole attacks, grey hole attacks, Sybil attacks, and data tampering attacks are all considered to provide comprehensive attacks on MANET. Every node is assigned trust values, which get updated on data transmission. Fuzzy Clustering is employed to identify malicious nodes. Evolutionary Game Theory (EGT) optimises network organisation by designating cluster heads and clusters as nodes. Additionally, the proposed protocol leverages the Grey Wolf Optimisation Routing Algorithm (GWO), which establishes efficient routes from the source to the sink node. The analysis result shows maximum performance with a packet delivery ratio of around 98%, throughput of 90% end-to-end delay reduced by 15%, and energy consumption reduced by 18%, respectively, compared to an existing protocol.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":"14 6","pages":"451-476"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12095","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Mobile Ad hoc Networks (MANETs) are crucial wireless networks for military, corporate, and emergency use, yet they are vulnerable to disruptions from malicious nodes. The presence of malicious nodes can lead to message transmission and routing disorganisation, and network performance is effectively compromised. Game theory-based fuzzy secure clustering (GTFSC) improves performance metrics in low-scale and high-scale networks. This protocol's novel ability to dynamically scale performance measures as nodes expand improves efficiency and adaptability. While improving performance metrics, the proposed algorithm also efficiently identifies malicious nodes and re-routes the transmission, excluding the found malicious nodes. For any MANET system, secure and successful data transmission is paramount. The proposed protocol integrates various algorithms to fulfil its aim of customised EGT, GWO, and fuzzy clustering. Black hole attacks, grey hole attacks, Sybil attacks, and data tampering attacks are all considered to provide comprehensive attacks on MANET. Every node is assigned trust values, which get updated on data transmission. Fuzzy Clustering is employed to identify malicious nodes. Evolutionary Game Theory (EGT) optimises network organisation by designating cluster heads and clusters as nodes. Additionally, the proposed protocol leverages the Grey Wolf Optimisation Routing Algorithm (GWO), which establishes efficient routes from the source to the sink node. The analysis result shows maximum performance with a packet delivery ratio of around 98%, throughput of 90% end-to-end delay reduced by 15%, and energy consumption reduced by 18%, respectively, compared to an existing protocol.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.