Advanced Drug Delivery Systems Utilizing β-Lactoglobulin: An Efficient Protein-Based Drug Carrier

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biopolymers Pub Date : 2025-02-06 DOI:10.1002/bip.70005
Charan M. Gowda, Sanjay Sharma, Sarika Wairkar
{"title":"Advanced Drug Delivery Systems Utilizing β-Lactoglobulin: An Efficient Protein-Based Drug Carrier","authors":"Charan M. Gowda,&nbsp;Sanjay Sharma,&nbsp;Sarika Wairkar","doi":"10.1002/bip.70005","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Proteins have shown significant potential as carrier systems due to specific binding interactions with several drug molecules. Among several other animal proteins, whey protein (WP) is a by-product of the dairy industry, mainly composed of globular proteins. β-Lactoglobulin (BLG) is a major component of WP, which offers a unique functional property for drug delivery, such as thermal stability, binding interactions, favorable charge characteristics, and a spherical shape. Several drug delivery systems (DDSs) have been developed using BLG as a carrier, including nanoparticles, nanocapsules, nanocomposites, nanoemulsions, solid dispersions, microparticles, and hydrogels. These delivery systems improve drug solubility, loading capacity, bioavailability, stability, and release rate and can provide targeted delivery. They have been employed in diverse applications, from treating cancer to enhancing oral drug delivery, reducing the toxicity of specific drugs, and offering controlled drug release. The future of BLG DDSs holds the promise of combination therapies, personalized medicine, and improved targeting precision. This review aims to discuss the role and utilization of BLG in several DDSs as a versatile carrier, revolutionizing the pharmaceutical industry. However, further research is expected to focus on optimizing degradation rates, enhancing biological compatibility, and addressing potential immune responses of BLG-based drug carriers.</p>\n </div>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"116 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.70005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Proteins have shown significant potential as carrier systems due to specific binding interactions with several drug molecules. Among several other animal proteins, whey protein (WP) is a by-product of the dairy industry, mainly composed of globular proteins. β-Lactoglobulin (BLG) is a major component of WP, which offers a unique functional property for drug delivery, such as thermal stability, binding interactions, favorable charge characteristics, and a spherical shape. Several drug delivery systems (DDSs) have been developed using BLG as a carrier, including nanoparticles, nanocapsules, nanocomposites, nanoemulsions, solid dispersions, microparticles, and hydrogels. These delivery systems improve drug solubility, loading capacity, bioavailability, stability, and release rate and can provide targeted delivery. They have been employed in diverse applications, from treating cancer to enhancing oral drug delivery, reducing the toxicity of specific drugs, and offering controlled drug release. The future of BLG DDSs holds the promise of combination therapies, personalized medicine, and improved targeting precision. This review aims to discuss the role and utilization of BLG in several DDSs as a versatile carrier, revolutionizing the pharmaceutical industry. However, further research is expected to focus on optimizing degradation rates, enhancing biological compatibility, and addressing potential immune responses of BLG-based drug carriers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信