A Multiparameter Singular Perturbation Analysis of the Robertson Model

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Lukas Baumgartner, Peter Szmolyan
{"title":"A Multiparameter Singular Perturbation Analysis of the Robertson Model","authors":"Lukas Baumgartner,&nbsp;Peter Szmolyan","doi":"10.1111/sapm.70020","DOIUrl":null,"url":null,"abstract":"<p>The Robertson model describing a chemical reaction involving three reactants is one of the classical examples of stiffness in ODEs. The stiffness is caused by the occurrence of three reaction rates <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>k</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>k</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n </mrow>\n <annotation>${k}_{1},{k}_{2},$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>k</mi>\n <mn>3</mn>\n </msub>\n <mo>,</mo>\n </mrow>\n <annotation>${k}_{3},$</annotation>\n </semantics></math> with largely differing orders of magnitude, acting as parameters. The model has been widely used as a numerical test problem. Surprisingly, no asymptotic analysis of this multiscale problem seems to exist. In this paper, we provide a full asymptotic analysis of the Robertson model under the assumption <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>k</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>k</mi>\n <mn>3</mn>\n </msub>\n <mo>≪</mo>\n <msub>\n <mi>k</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$k_1, k_3 \\ll k_2$</annotation>\n </semantics></math>. We rewrite the equations as a two-parameter singular perturbation problem in the rescaled small parameters <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ε</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>ε</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>:</mo>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>k</mi>\n <mn>1</mn>\n </msub>\n <mo>/</mo>\n <msub>\n <mi>k</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>k</mi>\n <mn>3</mn>\n </msub>\n <mo>/</mo>\n <msub>\n <mi>k</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$(\\varepsilon _1,\\varepsilon _2):=(k_1/k_2,k_3/k_2)$</annotation>\n </semantics></math>, which we then analyze using geometric singular perturbation theory (GSPT). To deal with the multiparameter singular structure, we perform blowups in parameter- and variable space. We identify four distinct regimes in a neighborhood of the singular limit <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>ε</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>ε</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$(\\varepsilon _1,\\varepsilon _2)= (0,0)$</annotation>\n </semantics></math>. Within these four regimes, we use GSPT and additional blowups to analyze the dynamics and the structure of solutions. Our asymptotic results are in excellent qualitative and quantitative agreement with the numerics.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70020","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Robertson model describing a chemical reaction involving three reactants is one of the classical examples of stiffness in ODEs. The stiffness is caused by the occurrence of three reaction rates k 1 , k 2 , ${k}_{1},{k}_{2},$ and k 3 , ${k}_{3},$ with largely differing orders of magnitude, acting as parameters. The model has been widely used as a numerical test problem. Surprisingly, no asymptotic analysis of this multiscale problem seems to exist. In this paper, we provide a full asymptotic analysis of the Robertson model under the assumption k 1 , k 3 k 2 $k_1, k_3 \ll k_2$ . We rewrite the equations as a two-parameter singular perturbation problem in the rescaled small parameters ( ε 1 , ε 2 ) : = ( k 1 / k 2 , k 3 / k 2 ) $(\varepsilon _1,\varepsilon _2):=(k_1/k_2,k_3/k_2)$ , which we then analyze using geometric singular perturbation theory (GSPT). To deal with the multiparameter singular structure, we perform blowups in parameter- and variable space. We identify four distinct regimes in a neighborhood of the singular limit ( ε 1 , ε 2 ) = ( 0 , 0 ) $(\varepsilon _1,\varepsilon _2)= (0,0)$ . Within these four regimes, we use GSPT and additional blowups to analyze the dynamics and the structure of solutions. Our asymptotic results are in excellent qualitative and quantitative agreement with the numerics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信