{"title":"Complex Band Structure for Subwavelength Evanescent Waves","authors":"Yannick De Bruijn, Erik Orvehed Hiltunen","doi":"10.1111/sapm.70022","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We present the mathematical and numerical theory for evanescent waves in subwavelength bandgap materials. We begin in the one-dimensional case, whereby fully explicit formulas for the complex band structure, in terms of the capacitance matrix, are available. As an example, we show that the gap functions can be used to accurately predict the decay rate of the interface mode of a photonic analogue of the Su–Schrieffer–Heeger model. In two dimensions, we derive the bandgap Green's function and characterize the subwavelength gap functions via layer potential techniques. By generalizing existing lattice-summation techniques, we illustrate our results numerically by computing the complex band structure in a variety of settings.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70022","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We present the mathematical and numerical theory for evanescent waves in subwavelength bandgap materials. We begin in the one-dimensional case, whereby fully explicit formulas for the complex band structure, in terms of the capacitance matrix, are available. As an example, we show that the gap functions can be used to accurately predict the decay rate of the interface mode of a photonic analogue of the Su–Schrieffer–Heeger model. In two dimensions, we derive the bandgap Green's function and characterize the subwavelength gap functions via layer potential techniques. By generalizing existing lattice-summation techniques, we illustrate our results numerically by computing the complex band structure in a variety of settings.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.