Complex Band Structure for Subwavelength Evanescent Waves

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Yannick De Bruijn, Erik Orvehed Hiltunen
{"title":"Complex Band Structure for Subwavelength Evanescent Waves","authors":"Yannick De Bruijn,&nbsp;Erik Orvehed Hiltunen","doi":"10.1111/sapm.70022","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We present the mathematical and numerical theory for evanescent waves in subwavelength bandgap materials. We begin in the one-dimensional case, whereby fully explicit formulas for the complex band structure, in terms of the capacitance matrix, are available. As an example, we show that the gap functions can be used to accurately predict the decay rate of the interface mode of a photonic analogue of the Su–Schrieffer–Heeger model. In two dimensions, we derive the bandgap Green's function and characterize the subwavelength gap functions via layer potential techniques. By generalizing existing lattice-summation techniques, we illustrate our results numerically by computing the complex band structure in a variety of settings.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70022","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present the mathematical and numerical theory for evanescent waves in subwavelength bandgap materials. We begin in the one-dimensional case, whereby fully explicit formulas for the complex band structure, in terms of the capacitance matrix, are available. As an example, we show that the gap functions can be used to accurately predict the decay rate of the interface mode of a photonic analogue of the Su–Schrieffer–Heeger model. In two dimensions, we derive the bandgap Green's function and characterize the subwavelength gap functions via layer potential techniques. By generalizing existing lattice-summation techniques, we illustrate our results numerically by computing the complex band structure in a variety of settings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信