Qurban Ali, Abdur Rashid Khan, Waseem Raza, Muhammad Saqib Bilal, Sadia Khalid, Muhammad Ayaz, Atta-Ur-Rehman Khan, Sunil Mundra
{"title":"Mechanisms of Microbial VOC-Mediated Communication in Plant Ecosystems and Agricultural Applications","authors":"Qurban Ali, Abdur Rashid Khan, Waseem Raza, Muhammad Saqib Bilal, Sadia Khalid, Muhammad Ayaz, Atta-Ur-Rehman Khan, Sunil Mundra","doi":"10.1002/sae2.70044","DOIUrl":null,"url":null,"abstract":"<p>Microbial volatile organic compounds (mVOCs) are crucial to the ecological interactions of plants and microbes, playing pivotal roles in plant defence, communication, and growth promotion. The classification, biosynthesis, and emission processes of mVOCs, and their multifaced functions and activities within plant ecosystems have been extensively studied. Moreover, the signalling pathways that enable mVOCs-mediated communication between plants and their surrounding environment are explored. The mVOCs are critical in mediating interactions with biotic and abiotic stressors, including plant pathogens and environmental changes. These interactions contribute to enhanced plant resilience and foster beneficial ecological interactions. Biotechnological mVOCs have great potential in sustainable agriculture, especially natural pest management and crop protection. These applications include various disease control strategies, such as biosensors, highlighting the crucial role of mVOCs in promoting natural pest control and supporting sustainable development growth. In this review, we explored the functions of mVOCs, mechanisms of action, and the types of interactions. We also discussed recent developments in their use and the challenges involved. We discussed the ethical and regulatory issues related to using mVOCs in agriculture biotechnology and their potential effects on human health and the environment. Finally, we highlight research gaps to fully leverage mVOC functions for sustainable plant production and ecological health.</p>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70044","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Agriculture and Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sae2.70044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial volatile organic compounds (mVOCs) are crucial to the ecological interactions of plants and microbes, playing pivotal roles in plant defence, communication, and growth promotion. The classification, biosynthesis, and emission processes of mVOCs, and their multifaced functions and activities within plant ecosystems have been extensively studied. Moreover, the signalling pathways that enable mVOCs-mediated communication between plants and their surrounding environment are explored. The mVOCs are critical in mediating interactions with biotic and abiotic stressors, including plant pathogens and environmental changes. These interactions contribute to enhanced plant resilience and foster beneficial ecological interactions. Biotechnological mVOCs have great potential in sustainable agriculture, especially natural pest management and crop protection. These applications include various disease control strategies, such as biosensors, highlighting the crucial role of mVOCs in promoting natural pest control and supporting sustainable development growth. In this review, we explored the functions of mVOCs, mechanisms of action, and the types of interactions. We also discussed recent developments in their use and the challenges involved. We discussed the ethical and regulatory issues related to using mVOCs in agriculture biotechnology and their potential effects on human health and the environment. Finally, we highlight research gaps to fully leverage mVOC functions for sustainable plant production and ecological health.