{"title":"An innovative hybrid model combining informer and K-Means clustering methods for invisible multisite solar power estimation","authors":"Quoc-Thang Phan, Yuan-Kang Wu, Quoc-Dung Phan","doi":"10.1049/rpg2.13176","DOIUrl":null,"url":null,"abstract":"<p>The employment of behind-the-meter solar photovoltaic (PV) systems has gained increasing popularity in recent years as more individuals and organizations aim to reduce their reliance on conventional grid-connected power sources and take advantage of the environmental and economic benefits of solar power. However, precisely estimating the potential output of PV systems is a challenging task, since most of the PV systems used in residential properties have been installed behind the meter. Consequently, electric power companies are limited to accessing only the recorded net electricity consumption. This article introduces an innovative approach to estimate behind-the-meter PV power generation within a large region, utilizing a limited representative subset. The proposed framework integrates Missforest, that is, a robust tool for missing data imputation, with a hybrid application of K-Means, Pearson Correlation Coefficient, and Principal Component Analysis, for the precise selection of representative PV sites. Additionally, it leverages the Informer model, a cutting-edge deep learning-based time series model, to link the relationship between the PV power generation at representative sites and the total PV power output on the entire region. To conduct a case study, the power output of 367 PV sites and solar radiation measured at 105 weather stations in Taiwan were collected and analyzed. The application of this comprehensive methodology demonstrates a notable advancement in the estimation of “invisible” PV power generation in comparison to other established techniques.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 S1","pages":"4318-4333"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13176","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13176","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The employment of behind-the-meter solar photovoltaic (PV) systems has gained increasing popularity in recent years as more individuals and organizations aim to reduce their reliance on conventional grid-connected power sources and take advantage of the environmental and economic benefits of solar power. However, precisely estimating the potential output of PV systems is a challenging task, since most of the PV systems used in residential properties have been installed behind the meter. Consequently, electric power companies are limited to accessing only the recorded net electricity consumption. This article introduces an innovative approach to estimate behind-the-meter PV power generation within a large region, utilizing a limited representative subset. The proposed framework integrates Missforest, that is, a robust tool for missing data imputation, with a hybrid application of K-Means, Pearson Correlation Coefficient, and Principal Component Analysis, for the precise selection of representative PV sites. Additionally, it leverages the Informer model, a cutting-edge deep learning-based time series model, to link the relationship between the PV power generation at representative sites and the total PV power output on the entire region. To conduct a case study, the power output of 367 PV sites and solar radiation measured at 105 weather stations in Taiwan were collected and analyzed. The application of this comprehensive methodology demonstrates a notable advancement in the estimation of “invisible” PV power generation in comparison to other established techniques.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf