An innovative hybrid model combining informer and K-Means clustering methods for invisible multisite solar power estimation

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS
Quoc-Thang Phan, Yuan-Kang Wu, Quoc-Dung Phan
{"title":"An innovative hybrid model combining informer and K-Means clustering methods for invisible multisite solar power estimation","authors":"Quoc-Thang Phan,&nbsp;Yuan-Kang Wu,&nbsp;Quoc-Dung Phan","doi":"10.1049/rpg2.13176","DOIUrl":null,"url":null,"abstract":"<p>The employment of behind-the-meter solar photovoltaic (PV) systems has gained increasing popularity in recent years as more individuals and organizations aim to reduce their reliance on conventional grid-connected power sources and take advantage of the environmental and economic benefits of solar power. However, precisely estimating the potential output of PV systems is a challenging task, since most of the PV systems used in residential properties have been installed behind the meter. Consequently, electric power companies are limited to accessing only the recorded net electricity consumption. This article introduces an innovative approach to estimate behind-the-meter PV power generation within a large region, utilizing a limited representative subset. The proposed framework integrates Missforest, that is, a robust tool for missing data imputation, with a hybrid application of K-Means, Pearson Correlation Coefficient, and Principal Component Analysis, for the precise selection of representative PV sites. Additionally, it leverages the Informer model, a cutting-edge deep learning-based time series model, to link the relationship between the PV power generation at representative sites and the total PV power output on the entire region. To conduct a case study, the power output of 367 PV sites and solar radiation measured at 105 weather stations in Taiwan were collected and analyzed. The application of this comprehensive methodology demonstrates a notable advancement in the estimation of “invisible” PV power generation in comparison to other established techniques.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 S1","pages":"4318-4333"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13176","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13176","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The employment of behind-the-meter solar photovoltaic (PV) systems has gained increasing popularity in recent years as more individuals and organizations aim to reduce their reliance on conventional grid-connected power sources and take advantage of the environmental and economic benefits of solar power. However, precisely estimating the potential output of PV systems is a challenging task, since most of the PV systems used in residential properties have been installed behind the meter. Consequently, electric power companies are limited to accessing only the recorded net electricity consumption. This article introduces an innovative approach to estimate behind-the-meter PV power generation within a large region, utilizing a limited representative subset. The proposed framework integrates Missforest, that is, a robust tool for missing data imputation, with a hybrid application of K-Means, Pearson Correlation Coefficient, and Principal Component Analysis, for the precise selection of representative PV sites. Additionally, it leverages the Informer model, a cutting-edge deep learning-based time series model, to link the relationship between the PV power generation at representative sites and the total PV power output on the entire region. To conduct a case study, the power output of 367 PV sites and solar radiation measured at 105 weather stations in Taiwan were collected and analyzed. The application of this comprehensive methodology demonstrates a notable advancement in the estimation of “invisible” PV power generation in comparison to other established techniques.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Renewable Power Generation
IET Renewable Power Generation 工程技术-工程:电子与电气
CiteScore
6.80
自引率
11.50%
发文量
268
审稿时长
6.6 months
期刊介绍: IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal. Specific technology areas covered by the journal include: Wind power technology and systems Photovoltaics Solar thermal power generation Geothermal energy Fuel cells Wave power Marine current energy Biomass conversion and power generation What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small. The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged. The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced. Current Special Issue. Call for papers: Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信