CAS9 Mediated In-Planta Defence Strategy Against Tomato Leaf Curl New Delhi Virus (ToLCNDV) in Tomato

IF 1.1 4区 农林科学 Q3 PLANT SCIENCES
Muhammad Ayyaz Ali, Muhammad Azmat Ullah Khan, Habiba Naz, Muniba Abid Munir Malik, Umer Rashid, Naeem Mahmood Ashraf, Amber Afroz, Muhammad Shafiq, Abdul Qayyum Rao
{"title":"CAS9 Mediated In-Planta Defence Strategy Against Tomato Leaf Curl New Delhi Virus (ToLCNDV) in Tomato","authors":"Muhammad Ayyaz Ali,&nbsp;Muhammad Azmat Ullah Khan,&nbsp;Habiba Naz,&nbsp;Muniba Abid Munir Malik,&nbsp;Umer Rashid,&nbsp;Naeem Mahmood Ashraf,&nbsp;Amber Afroz,&nbsp;Muhammad Shafiq,&nbsp;Abdul Qayyum Rao","doi":"10.1111/jph.70026","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Tomato leaf curl New Delhi virus (ToLCNDV), a begomovirus, that causes severe leaf curling, stunting, and reduced yield in tomato plants is consistently threatening its production worldwide. CRISPR/Cas9-mediated genome editing has shown immense potential in developing disease-resistant crops. This study successfully focuses on designing a precise and efficient strategy for in planta defence against ToLCNDV. Five key targets within the viral genome, essential for its replication and pathogenicity, were selected. Five Cas9-expressing constructs, along with the ToLCNDV infectious clone, were agroinfiltrated into tomato plants. Three constructs effectively disrupted the ToLCNDV genome. These three constructs, 1T, 2T, and 4T, were shortlisted based on symptom severity level. They showed a relatively low viral titre of 0.5, 0.42, and 0.25 through quantitative real time PCR (qPCR) after 3, 6, and 9 days of post-co-infiltration, respectively. Positive control plants showed significant signs of infection like yellowing of leaves, thickening of veins, and majorly upward curling of leaves. In comparison, plants infiltrated with three Cas9 constructs had mild yellowing of leaves that recovered after approximately 21-dpi. Furthermore, we assessed the agronomic performance of Cas9-mediated tomato plants through in planta <i>Agrobacterium-</i>mediated transformation with three short-listed guided RNA (gRNA) constructs under greenhouse conditions. Also, qPCR analysis of Cas9 protein in 7, 14, and 21-day of intervals gave a relative expression of 0.85, 0.76 and 0.51 respectively in genetically engineered (GE) plants through in planta transformation. In conclusion, this research contributes to CRISPR-Cas9-mediated plant genome editing. Our findings substantiate the efficacy of the CRISPR/Cas9 system in achieving durable engineering of resistance against ToLCNDV with 30% transformation efficiency in tomato plant. Furthermore, this study illuminates potential avenues for extending the application of this technology to confer resistance against singular and multiple infectious viruses in diverse crop species.</p>\n </div>","PeriodicalId":16843,"journal":{"name":"Journal of Phytopathology","volume":"173 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jph.70026","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tomato leaf curl New Delhi virus (ToLCNDV), a begomovirus, that causes severe leaf curling, stunting, and reduced yield in tomato plants is consistently threatening its production worldwide. CRISPR/Cas9-mediated genome editing has shown immense potential in developing disease-resistant crops. This study successfully focuses on designing a precise and efficient strategy for in planta defence against ToLCNDV. Five key targets within the viral genome, essential for its replication and pathogenicity, were selected. Five Cas9-expressing constructs, along with the ToLCNDV infectious clone, were agroinfiltrated into tomato plants. Three constructs effectively disrupted the ToLCNDV genome. These three constructs, 1T, 2T, and 4T, were shortlisted based on symptom severity level. They showed a relatively low viral titre of 0.5, 0.42, and 0.25 through quantitative real time PCR (qPCR) after 3, 6, and 9 days of post-co-infiltration, respectively. Positive control plants showed significant signs of infection like yellowing of leaves, thickening of veins, and majorly upward curling of leaves. In comparison, plants infiltrated with three Cas9 constructs had mild yellowing of leaves that recovered after approximately 21-dpi. Furthermore, we assessed the agronomic performance of Cas9-mediated tomato plants through in planta Agrobacterium-mediated transformation with three short-listed guided RNA (gRNA) constructs under greenhouse conditions. Also, qPCR analysis of Cas9 protein in 7, 14, and 21-day of intervals gave a relative expression of 0.85, 0.76 and 0.51 respectively in genetically engineered (GE) plants through in planta transformation. In conclusion, this research contributes to CRISPR-Cas9-mediated plant genome editing. Our findings substantiate the efficacy of the CRISPR/Cas9 system in achieving durable engineering of resistance against ToLCNDV with 30% transformation efficiency in tomato plant. Furthermore, this study illuminates potential avenues for extending the application of this technology to confer resistance against singular and multiple infectious viruses in diverse crop species.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Phytopathology
Journal of Phytopathology 生物-植物科学
CiteScore
2.90
自引率
0.00%
发文量
88
审稿时长
4-8 weeks
期刊介绍: Journal of Phytopathology publishes original and review articles on all scientific aspects of applied phytopathology in agricultural and horticultural crops. Preference is given to contributions improving our understanding of the biotic and abiotic determinants of plant diseases, including epidemics and damage potential, as a basis for innovative disease management, modelling and forecasting. This includes practical aspects and the development of methods for disease diagnosis as well as infection bioassays. Studies at the population, organism, physiological, biochemical and molecular genetic level are welcome. The journal scope comprises the pathology and epidemiology of plant diseases caused by microbial pathogens, viruses and nematodes. Accepted papers should advance our conceptual knowledge of plant diseases, rather than presenting descriptive or screening data unrelated to phytopathological mechanisms or functions. Results from unrepeated experimental conditions or data with no or inappropriate statistical processing will not be considered. Authors are encouraged to look at past issues to ensure adherence to the standards of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信