Influence of Bi2O3 Concentration on Optical and Gamma Ray Shielding Properties of BaTiO3 Ceramics

Ramakumar Nodagala, Tejeswara Rao Ponnada
{"title":"Influence of Bi2O3 Concentration on Optical and Gamma Ray Shielding Properties of BaTiO3 Ceramics","authors":"Ramakumar Nodagala,&nbsp;Tejeswara Rao Ponnada","doi":"10.1002/appl.70001","DOIUrl":null,"url":null,"abstract":"<p>This study elaborated on the influence of bismuth oxide (Bi<sub>2</sub>O<sub>3</sub>, Bi) on optical and radiation shielding properties of Barium titanate (BaTiO<sub>3</sub>, BTO) when added with different wt% concentrations. To study these properties, BaTiO<sub>3</sub>–xBi<sub>2</sub>O<sub>3</sub>; x = 0,2,4,6 and 8 wt% ceramics samples were fabricated via solid state reaction method. The optical properties of prepared samples were inspected with the help of the UV–Vis technique. The absorption coefficient increased while transmittance decreased with increasing the wt% of Bi content. Samples show a decrement in indirect optical bandgap values from 3.44 to 3.35 eV while direct bandgap from 3.19 to 3.02 eV when Bi content increases from x = 0 wt% to 8 wt%. The other optical parameters, such as Urbach energy, refractive index, extinction coefficient, and dielectric constant, were also calculated. The FESEM (field emission scanning electron microscope) technique was used to identify the homogeneity in the samples. The prepared samples were tested at 356, 511, 600, 1173, 1275, and 1333 keV energies to estimate radiation shielding properties with radioactive sources 133<sub>Ba</sub>, 22<sub>Na</sub>, 137<sub>Cs</sub>, and 60<sub>Co</sub>. As Bi content increased in prepared samples, the mass attenuation coefficient (MAC) increased. At energy 356 keV, the observed MAC values are 12.685, 12.983, 13.282, 13.58, and 13.898 cm<sup>2</sup>/g while at 1333 keV, the values noticed as 5.054, 5.066, 5.079, 5.091, and 5.103 cm<sup>2</sup>/g as Bi content increased from x = 0 wt% to x = 8 wt%. Both atomic cross-section (ACS) and electronic cross-section (ECS) were calculated. ACS values are improved from 9.825 to 11.1967 barn/atom while the ECS values enhanced from 3.8949 to 4.0226 barn/electron at 356 keV as Bi content increased from x = 0 wt% to x = 8 wt%. This similar trend was observed at other energies (511, 600, 1173, and 1275 keV) for all prepared samples. The theoretical values obtained from Phy-X/PSD software were compared with calculated values and found a close agreement between them. From results, it was clear that prepared samples showed enhanced optical and radiation shielding properties when Bi content increased in BTO ceramics.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/appl.70001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study elaborated on the influence of bismuth oxide (Bi2O3, Bi) on optical and radiation shielding properties of Barium titanate (BaTiO3, BTO) when added with different wt% concentrations. To study these properties, BaTiO3–xBi2O3; x = 0,2,4,6 and 8 wt% ceramics samples were fabricated via solid state reaction method. The optical properties of prepared samples were inspected with the help of the UV–Vis technique. The absorption coefficient increased while transmittance decreased with increasing the wt% of Bi content. Samples show a decrement in indirect optical bandgap values from 3.44 to 3.35 eV while direct bandgap from 3.19 to 3.02 eV when Bi content increases from x = 0 wt% to 8 wt%. The other optical parameters, such as Urbach energy, refractive index, extinction coefficient, and dielectric constant, were also calculated. The FESEM (field emission scanning electron microscope) technique was used to identify the homogeneity in the samples. The prepared samples were tested at 356, 511, 600, 1173, 1275, and 1333 keV energies to estimate radiation shielding properties with radioactive sources 133Ba, 22Na, 137Cs, and 60Co. As Bi content increased in prepared samples, the mass attenuation coefficient (MAC) increased. At energy 356 keV, the observed MAC values are 12.685, 12.983, 13.282, 13.58, and 13.898 cm2/g while at 1333 keV, the values noticed as 5.054, 5.066, 5.079, 5.091, and 5.103 cm2/g as Bi content increased from x = 0 wt% to x = 8 wt%. Both atomic cross-section (ACS) and electronic cross-section (ECS) were calculated. ACS values are improved from 9.825 to 11.1967 barn/atom while the ECS values enhanced from 3.8949 to 4.0226 barn/electron at 356 keV as Bi content increased from x = 0 wt% to x = 8 wt%. This similar trend was observed at other energies (511, 600, 1173, and 1275 keV) for all prepared samples. The theoretical values obtained from Phy-X/PSD software were compared with calculated values and found a close agreement between them. From results, it was clear that prepared samples showed enhanced optical and radiation shielding properties when Bi content increased in BTO ceramics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信