Studies on effective solar photovoltaic integration in distribution network with a blend of Monte Carlo simulation and artificial hummingbird algorithm

IF 1.6 Q4 ENERGY & FUELS
Ibrahim Cagri Barutcu, Gulshan Sharma, Emre Çelik, Pitshou N. Bokoro
{"title":"Studies on effective solar photovoltaic integration in distribution network with a blend of Monte Carlo simulation and artificial hummingbird algorithm","authors":"Ibrahim Cagri Barutcu,&nbsp;Gulshan Sharma,&nbsp;Emre Çelik,&nbsp;Pitshou N. Bokoro","doi":"10.1049/esi2.12175","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the two level stochastic optimisation approach has been suggested. In the lower level, the probability distribution functions (pdfs) for bus voltages and branch currents have been determined using the Monte Carlo simulation (MCS) to be employed in chance-constrained probabilistic optimisation by taking into account solar radiation and power consumption uncertainties in the distribution networks (DNs). In the upper level, artificial hummingbird algorithm (AHA) handles the expected power loss minimisation subjected to chance constraints, which are related to bus voltages and branch currents, by optimising photovoltaic (PV) system capacities. This research examines the effect of uncertainties in PV system performing under diverse solar radiation and varying PV penetration level scenarios on expected power losses with stochastic DN limits. The stochastic optimisation approach has been compared with the deterministic method for observing the efficiency with optimal power usage. This research improves the knowledge base for optimal PV installation in DN by combining AHA with MCS and emphasising chance-constrained methods. To indicate the efficacy of proposed strategy, the optimisation outcomes are tested utilising MCS under various uncertainty circumstances and DN parameters are assessed in terms of probabilities of exceeding limitations. The results are compared with the application of firefly algorithm (FA) using stochastic assessment and simulations. The simulation results show that the AHA technique outperforms the FA method in terms of effectively minimising power losses with less simulation time.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 S1","pages":"862-890"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12175","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the two level stochastic optimisation approach has been suggested. In the lower level, the probability distribution functions (pdfs) for bus voltages and branch currents have been determined using the Monte Carlo simulation (MCS) to be employed in chance-constrained probabilistic optimisation by taking into account solar radiation and power consumption uncertainties in the distribution networks (DNs). In the upper level, artificial hummingbird algorithm (AHA) handles the expected power loss minimisation subjected to chance constraints, which are related to bus voltages and branch currents, by optimising photovoltaic (PV) system capacities. This research examines the effect of uncertainties in PV system performing under diverse solar radiation and varying PV penetration level scenarios on expected power losses with stochastic DN limits. The stochastic optimisation approach has been compared with the deterministic method for observing the efficiency with optimal power usage. This research improves the knowledge base for optimal PV installation in DN by combining AHA with MCS and emphasising chance-constrained methods. To indicate the efficacy of proposed strategy, the optimisation outcomes are tested utilising MCS under various uncertainty circumstances and DN parameters are assessed in terms of probabilities of exceeding limitations. The results are compared with the application of firefly algorithm (FA) using stochastic assessment and simulations. The simulation results show that the AHA technique outperforms the FA method in terms of effectively minimising power losses with less simulation time.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Energy Systems Integration
IET Energy Systems Integration Engineering-Engineering (miscellaneous)
CiteScore
5.90
自引率
8.30%
发文量
29
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信