Multi-omics analysis reveals the allelic variation in JrWDRC2A9 and JrGPIAP conferring resistance against anthracnose (Colletotrichum gloeosporioides) in walnut (Juglans regia)

IF 6.2 1区 生物学 Q1 PLANT SCIENCES
Andi Gong, Yuhui Dong, Shengyi Xu, Yutian Mu, Xichen Li, Chunyu Li, Qiang Liang, Jian Ning Liu, Changxi Wang, Ke Qiang Yang, Hongcheng Fang
{"title":"Multi-omics analysis reveals the allelic variation in JrWDRC2A9 and JrGPIAP conferring resistance against anthracnose (Colletotrichum gloeosporioides) in walnut (Juglans regia)","authors":"Andi Gong,&nbsp;Yuhui Dong,&nbsp;Shengyi Xu,&nbsp;Yutian Mu,&nbsp;Xichen Li,&nbsp;Chunyu Li,&nbsp;Qiang Liang,&nbsp;Jian Ning Liu,&nbsp;Changxi Wang,&nbsp;Ke Qiang Yang,&nbsp;Hongcheng Fang","doi":"10.1111/tpj.17254","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Walnut anthracnose induced by <i>Colletotrichum gloeosporioides</i> is a devastating disease that seriously threatens walnut cultivation. Screening novel resistance genes and exploring the molecular mechanisms are essential for disease-resistant genetic improvement of walnut. We conducted a genome-wide association studies of disease resistance traits based on the relative resistance index and single nucleotide polymorphisms (SNPs) obtained from 182 resequenced walnut accessions and 10 loci and corresponding candidate genes associated with resistance against <i>C. gloeosporioides</i> were identified. Then, through combined transcriptome analysis during <i>C. gloeosporioides</i> infection and qRT-PCR, we identified JrWDRC2A9 in SNP Chr13_36265784 loci and JrGPIAP in SNP Chr07_10106470 loci as two walnut anthracnose resistance genes. The validation of the disease resistance function of transgenic strains indicated that both JrWDRC2A9 and JrGPIAP promote walnut resistance to anthracnose. SNP Chr13_36265784 (A&gt;G) is located in the coding region of JrWDRC2A9 causing a glutamine (JrWDRC2A9<sup>HapI</sup>) to arginine (JrWDRC2A9<sup>HapII</sup>). Allelic variation in the WD domain attenuates JrWDRC2A9-mediated resistance against <i>C. gloeosporioides</i> and the binding affinity of JrWDRC2A9 for JrTLP1. On the contrary, the allelic variation caused by SNP Chr07_10106470 (T&gt;G) increased the walnut accessions resistance to <i>C. gloeosporioides</i> by promoting the expression level of JrGPIAP. Functional genomics revealed that JrGPIAP binds to the promoter of <i>JrPR1L</i> and activates its transcription, which is strengthened by the interaction between JrGPIAP and JrEMP24. These findings reveal the allelic variation in JrWDRC2A9 and JrGPIAP conferring resistance against <i>C. gloeosporioides</i>, providing a genetic basis for walnut disease resistance breeding in the future.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 3","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17254","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Walnut anthracnose induced by Colletotrichum gloeosporioides is a devastating disease that seriously threatens walnut cultivation. Screening novel resistance genes and exploring the molecular mechanisms are essential for disease-resistant genetic improvement of walnut. We conducted a genome-wide association studies of disease resistance traits based on the relative resistance index and single nucleotide polymorphisms (SNPs) obtained from 182 resequenced walnut accessions and 10 loci and corresponding candidate genes associated with resistance against C. gloeosporioides were identified. Then, through combined transcriptome analysis during C. gloeosporioides infection and qRT-PCR, we identified JrWDRC2A9 in SNP Chr13_36265784 loci and JrGPIAP in SNP Chr07_10106470 loci as two walnut anthracnose resistance genes. The validation of the disease resistance function of transgenic strains indicated that both JrWDRC2A9 and JrGPIAP promote walnut resistance to anthracnose. SNP Chr13_36265784 (A>G) is located in the coding region of JrWDRC2A9 causing a glutamine (JrWDRC2A9HapI) to arginine (JrWDRC2A9HapII). Allelic variation in the WD domain attenuates JrWDRC2A9-mediated resistance against C. gloeosporioides and the binding affinity of JrWDRC2A9 for JrTLP1. On the contrary, the allelic variation caused by SNP Chr07_10106470 (T>G) increased the walnut accessions resistance to C. gloeosporioides by promoting the expression level of JrGPIAP. Functional genomics revealed that JrGPIAP binds to the promoter of JrPR1L and activates its transcription, which is strengthened by the interaction between JrGPIAP and JrEMP24. These findings reveal the allelic variation in JrWDRC2A9 and JrGPIAP conferring resistance against C. gloeosporioides, providing a genetic basis for walnut disease resistance breeding in the future.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信