{"title":"Phosphate deficiency inducible OsGDPD5 affects root growth by regulating sugar-auxin crosstalk","authors":"Lokesh Verma, Mandavi Pandey, Chitra Bhatia, Poonam Mehra, Bhagat Singh, Jitender Giri","doi":"10.1111/tpj.17249","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Glycerophosphodiester phosphodiesterases (GDPDs) enzymes are known to be involved in phospholipids degradation pathways, where glycerophosphodiesters are hydrolyzed to glycerol-3-phosphate (G3P) and corresponding alcohol. In plants, GDPDs are involved in phosphate deficiency adaptive responses and have been shown to impact root length, but the precise mechanism remains unclear. This study focuses on the rice <i>GDPD5</i> gene and its role in regulating primary root growth. Our research demonstrates that <i>OsGDPD5</i> encodes a functional GDPD enzyme and could hydrolyze glycerophosphocholine and glycerophosphorylethanolamine. At transcriptional levels, <i>OsGDPD5</i> is preferentially expressed in the root tip and regulated by transcription factor OsPHR2. We have used CRISPR/Cas9 to generate <i>OsGDPD5</i> knock-out lines, allowing us to explore its role in root growth. Our findings show that <i>osgdpd5</i> mutants had a shorter primary root, which could be restored to a normal level by the exogenous application of sugar or G3P. Further, knocking out <i>OsGDPD5</i> alters endogenous levels of G3P and sugars, affecting auxin biosynthesis in the root and, ultimately, primary root growth. In this manner, OsGDPD5 has a crucial role in regulating physiological processes, specifically sugar and auxin signaling, which are known to be involved in root growth regulation in rice. Our research thus unraveled a link between rice phosphate deficiency-responsive lipid remodeling and root growth via sugar-hormone signaling.</p>\n </div>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 3","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17249","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Glycerophosphodiester phosphodiesterases (GDPDs) enzymes are known to be involved in phospholipids degradation pathways, where glycerophosphodiesters are hydrolyzed to glycerol-3-phosphate (G3P) and corresponding alcohol. In plants, GDPDs are involved in phosphate deficiency adaptive responses and have been shown to impact root length, but the precise mechanism remains unclear. This study focuses on the rice GDPD5 gene and its role in regulating primary root growth. Our research demonstrates that OsGDPD5 encodes a functional GDPD enzyme and could hydrolyze glycerophosphocholine and glycerophosphorylethanolamine. At transcriptional levels, OsGDPD5 is preferentially expressed in the root tip and regulated by transcription factor OsPHR2. We have used CRISPR/Cas9 to generate OsGDPD5 knock-out lines, allowing us to explore its role in root growth. Our findings show that osgdpd5 mutants had a shorter primary root, which could be restored to a normal level by the exogenous application of sugar or G3P. Further, knocking out OsGDPD5 alters endogenous levels of G3P and sugars, affecting auxin biosynthesis in the root and, ultimately, primary root growth. In this manner, OsGDPD5 has a crucial role in regulating physiological processes, specifically sugar and auxin signaling, which are known to be involved in root growth regulation in rice. Our research thus unraveled a link between rice phosphate deficiency-responsive lipid remodeling and root growth via sugar-hormone signaling.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.