APOTSA: Anchor placement optimisation using discrete Tabu search algorithm for area-based localisation

IF 1.5 Q3 TELECOMMUNICATIONS
Sayyidshahab Nabavi, Joachim Schauer, Carlo Alberto Boano, Kay Römer
{"title":"APOTSA: Anchor placement optimisation using discrete Tabu search algorithm for area-based localisation","authors":"Sayyidshahab Nabavi,&nbsp;Joachim Schauer,&nbsp;Carlo Alberto Boano,&nbsp;Kay Römer","doi":"10.1049/wss2.12092","DOIUrl":null,"url":null,"abstract":"<p>Recently, there has been an increasing interest in indoor localisation due to the demand for location-based services. Diverse techniques have been described in the literature to improve indoor localisation services, but their accuracy is significantly affected by the number and location of the anchors, which act as a reference point for localising tags in a given space. The authors focus on indoor area-based localisation. A set of anchors defines certain geographical areas, called residence areas, and the location of a tag is approximated by the residence area in which the tag is placed. Hence the position is not given by exact coordinates. In this approach, placing the anchors such that the resulting residence areas are small on average yields a high-quality localisation accuracy. The authors’ main contribution is the introduction of a discretisation method to calculate the residence areas for a given anchor placement more efficiently. This method reduces the runtime compared to the algorithms from the literature dramatically and hence allows us to search the solution space more efficiently. The authors propose APOTSA, a novel approach for discovering a high-quality placement of anchors to improve the accuracy of area-based indoor localisation systems while requiring a shorter execution time than existing approaches. The proposed algorithm is based on Tabu search and optimises the localisation accuracy by minimising the expected residence area. APOTSA's localisation accuracy and time of execution are evaluated by different indoor-localisation scenarios involving up to five anchors. The results indicate that the expected residence area and the time of execution can be reduced by up to 9.5% and 99% compared to the state-of-the-art local search anchors placement (LSAP) algorithm, respectively.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":"14 6","pages":"427-440"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12092","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, there has been an increasing interest in indoor localisation due to the demand for location-based services. Diverse techniques have been described in the literature to improve indoor localisation services, but their accuracy is significantly affected by the number and location of the anchors, which act as a reference point for localising tags in a given space. The authors focus on indoor area-based localisation. A set of anchors defines certain geographical areas, called residence areas, and the location of a tag is approximated by the residence area in which the tag is placed. Hence the position is not given by exact coordinates. In this approach, placing the anchors such that the resulting residence areas are small on average yields a high-quality localisation accuracy. The authors’ main contribution is the introduction of a discretisation method to calculate the residence areas for a given anchor placement more efficiently. This method reduces the runtime compared to the algorithms from the literature dramatically and hence allows us to search the solution space more efficiently. The authors propose APOTSA, a novel approach for discovering a high-quality placement of anchors to improve the accuracy of area-based indoor localisation systems while requiring a shorter execution time than existing approaches. The proposed algorithm is based on Tabu search and optimises the localisation accuracy by minimising the expected residence area. APOTSA's localisation accuracy and time of execution are evaluated by different indoor-localisation scenarios involving up to five anchors. The results indicate that the expected residence area and the time of execution can be reduced by up to 9.5% and 99% compared to the state-of-the-art local search anchors placement (LSAP) algorithm, respectively.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Wireless Sensor Systems
IET Wireless Sensor Systems TELECOMMUNICATIONS-
CiteScore
4.90
自引率
5.30%
发文量
13
审稿时长
33 weeks
期刊介绍: IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信