Shuai Yue, Haojie Yan, Junjie Shao, Jingjing Zhou, Shujin Shi, Haiming Wang, Xiaoyang Hong, Jun Li, Ran Zhang
{"title":"Numerical Simulation of Fluid–Structure Interaction in Axillary Artery Venoarterial Extracorporeal Membrane Oxygenation for Heart Failure Patients","authors":"Shuai Yue, Haojie Yan, Junjie Shao, Jingjing Zhou, Shujin Shi, Haiming Wang, Xiaoyang Hong, Jun Li, Ran Zhang","doi":"10.1002/cnm.70001","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Although axillary artery venoarterial extracorporeal membrane oxygenation (VA-ECMO) has been utilized as a mechanical circulatory support for patients with end-stage heart failure (HF), there is currently insufficient evidence to support its effectiveness and safety. The objective of this study was to analyze the hemodynamic effects of axillary artery VA-ECMO. To this end, we obtained CT angiographic imaging data of the aorta from a carefully selected heart failure patient with a cardiac output of 2.1 L/min. These data were used to construct a detailed fluid–structure interaction model of the aorta. Axillary artery VA-ECMO was then simulated within this model, maintaining a constant flow rate of 3 L/min. The intra-aortic balloon counterpulsation (IABP) balloon was simulated to inflate and deflate in synchrony with the diastolic and systolic phases of the cardiac cycle. Hemodynamic effects, including left ventricular (LV) pressure afterload, vessel wall stress, perfusion of vital organs, blood flow pulsatility, and the watershed region, were calculated using fluid–structure interaction analysis. We found that axillary artery VA-ECMO delivers well-distributed, oxygen-rich blood flow but may increase left ventricular (LV) afterload and reduce cerebral blood flow. However, when combined with IABP, it unloads LV pressure and increases cerebral blood flow. Integrating axillary artery VA-ECMO with IABP can promote cardiac function recovery and improve oxygen-rich blood perfusion to the vital organs of heart failure patients.</p>\n </div>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.70001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Although axillary artery venoarterial extracorporeal membrane oxygenation (VA-ECMO) has been utilized as a mechanical circulatory support for patients with end-stage heart failure (HF), there is currently insufficient evidence to support its effectiveness and safety. The objective of this study was to analyze the hemodynamic effects of axillary artery VA-ECMO. To this end, we obtained CT angiographic imaging data of the aorta from a carefully selected heart failure patient with a cardiac output of 2.1 L/min. These data were used to construct a detailed fluid–structure interaction model of the aorta. Axillary artery VA-ECMO was then simulated within this model, maintaining a constant flow rate of 3 L/min. The intra-aortic balloon counterpulsation (IABP) balloon was simulated to inflate and deflate in synchrony with the diastolic and systolic phases of the cardiac cycle. Hemodynamic effects, including left ventricular (LV) pressure afterload, vessel wall stress, perfusion of vital organs, blood flow pulsatility, and the watershed region, were calculated using fluid–structure interaction analysis. We found that axillary artery VA-ECMO delivers well-distributed, oxygen-rich blood flow but may increase left ventricular (LV) afterload and reduce cerebral blood flow. However, when combined with IABP, it unloads LV pressure and increases cerebral blood flow. Integrating axillary artery VA-ECMO with IABP can promote cardiac function recovery and improve oxygen-rich blood perfusion to the vital organs of heart failure patients.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.