Identification of Plant Species Using Convolutional Neural Network with Transfer Learning

IF 1.1 4区 农林科学 Q3 PLANT SCIENCES
Anupama Arun, Sanjeev Sharma, Bhupendra Singh, Tanmoy Hazra
{"title":"Identification of Plant Species Using Convolutional Neural Network with Transfer Learning","authors":"Anupama Arun,&nbsp;Sanjeev Sharma,&nbsp;Bhupendra Singh,&nbsp;Tanmoy Hazra","doi":"10.1111/jph.70032","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Plants are the building blocks of nature and human beings. However, the excessive explosion of population and climate changes, some plants are extinct, and some are on the corner of extinction. Additionally, numerous species remain unexplored till now. Exploring the species in the traditional way are labor-intensive, time-consuming and require specialised expertise. So, it is a very challenging task. To overcome these challenges, various state-of-the-art approaches have been proposed. These approaches often face significant limitations related to accuracy, training and testing processes. This paper proposed a novel approach to species identification leveraging deep learning techniques, employing a weighted average methodology. The proposed approach utilises well known publicly available datasets like Malayakew (MK) and Leafsnap, to evaluate <i>F</i>1 score, recall, accuracy, and precision. In proposed approach we utilised pretrained Convolutional Neural Networks (CNNs) and Transfer Learning (TL) to enhance performance. Specifically, architectures such as NASNet, DenseNet121, ResNet50V2, Xception, VGG19 and VGG16 were employed in the experimental study. The proposed approach achieved an <i>F</i>1 score of 99.9%, recall of 100%, accuracy of 100% and precision of 100% on the MK dataset. On the Leafsnap dataset, the suggested approach achieved an <i>F</i>1 score of 94%, recall of 94%, accuracy of 93.5% and precision of 94%. These results demonstrate that the proposed approach significantly outperforms existing state-of-the-art works, offering a robust and efficient solution for species identification across diverse datasets.</p>\n </div>","PeriodicalId":16843,"journal":{"name":"Journal of Phytopathology","volume":"173 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jph.70032","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plants are the building blocks of nature and human beings. However, the excessive explosion of population and climate changes, some plants are extinct, and some are on the corner of extinction. Additionally, numerous species remain unexplored till now. Exploring the species in the traditional way are labor-intensive, time-consuming and require specialised expertise. So, it is a very challenging task. To overcome these challenges, various state-of-the-art approaches have been proposed. These approaches often face significant limitations related to accuracy, training and testing processes. This paper proposed a novel approach to species identification leveraging deep learning techniques, employing a weighted average methodology. The proposed approach utilises well known publicly available datasets like Malayakew (MK) and Leafsnap, to evaluate F1 score, recall, accuracy, and precision. In proposed approach we utilised pretrained Convolutional Neural Networks (CNNs) and Transfer Learning (TL) to enhance performance. Specifically, architectures such as NASNet, DenseNet121, ResNet50V2, Xception, VGG19 and VGG16 were employed in the experimental study. The proposed approach achieved an F1 score of 99.9%, recall of 100%, accuracy of 100% and precision of 100% on the MK dataset. On the Leafsnap dataset, the suggested approach achieved an F1 score of 94%, recall of 94%, accuracy of 93.5% and precision of 94%. These results demonstrate that the proposed approach significantly outperforms existing state-of-the-art works, offering a robust and efficient solution for species identification across diverse datasets.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Phytopathology
Journal of Phytopathology 生物-植物科学
CiteScore
2.90
自引率
0.00%
发文量
88
审稿时长
4-8 weeks
期刊介绍: Journal of Phytopathology publishes original and review articles on all scientific aspects of applied phytopathology in agricultural and horticultural crops. Preference is given to contributions improving our understanding of the biotic and abiotic determinants of plant diseases, including epidemics and damage potential, as a basis for innovative disease management, modelling and forecasting. This includes practical aspects and the development of methods for disease diagnosis as well as infection bioassays. Studies at the population, organism, physiological, biochemical and molecular genetic level are welcome. The journal scope comprises the pathology and epidemiology of plant diseases caused by microbial pathogens, viruses and nematodes. Accepted papers should advance our conceptual knowledge of plant diseases, rather than presenting descriptive or screening data unrelated to phytopathological mechanisms or functions. Results from unrepeated experimental conditions or data with no or inappropriate statistical processing will not be considered. Authors are encouraged to look at past issues to ensure adherence to the standards of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信