Weiming Wang, Zhijian Liu, Jun Lou, Cheng Cheng, Qi Song, Yaoting Shi
{"title":"Analysis of broadband oscillation mechanisms in grid-forming and grid-following converters based on virtual synchronous generator","authors":"Weiming Wang, Zhijian Liu, Jun Lou, Cheng Cheng, Qi Song, Yaoting Shi","doi":"10.1049/gtd2.70015","DOIUrl":null,"url":null,"abstract":"<p>Aiming at the problem of increased complexity in broadband oscillations caused by the introduction of virtual synchronous generator (VSG) control to grid-forming and grid-following grid-connected converters interacting with inductive weak grids, positive and negative sequence impedance of such converters is established under small perturbations in phase angle and voltage using harmonic linearization. The impact of various control links on the broadband impedance characteristics associated with different control strategies is then analysed. It is observed that the grid-forming converter equipped with VSG demonstrates lower impedance magnitude and inductive behaviour in the medium-to-high frequency range, thus emulating the external behaviour of a synchronous generator more accurately. Furthermore, the analysis based on the maximum peak Nyquist stability criterion reveals that voltage control and current-type VSG lack phase margin, leading to potential oscillation risks within their respective dominant frequency bands. Finally, the validity of the broadband oscillation mechanism analysis is confirmed through hardware-in-loop experiments and impedance sweep analyses.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70015","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming at the problem of increased complexity in broadband oscillations caused by the introduction of virtual synchronous generator (VSG) control to grid-forming and grid-following grid-connected converters interacting with inductive weak grids, positive and negative sequence impedance of such converters is established under small perturbations in phase angle and voltage using harmonic linearization. The impact of various control links on the broadband impedance characteristics associated with different control strategies is then analysed. It is observed that the grid-forming converter equipped with VSG demonstrates lower impedance magnitude and inductive behaviour in the medium-to-high frequency range, thus emulating the external behaviour of a synchronous generator more accurately. Furthermore, the analysis based on the maximum peak Nyquist stability criterion reveals that voltage control and current-type VSG lack phase margin, leading to potential oscillation risks within their respective dominant frequency bands. Finally, the validity of the broadband oscillation mechanism analysis is confirmed through hardware-in-loop experiments and impedance sweep analyses.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf