Frequency-diverse aperture imaging using an open cavity with a rough base

IF 1.1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Ehsan Rashidi-Ranjbar, Jalil A. Rashed-Mohassel, Mojtaba Dehmollaian
{"title":"Frequency-diverse aperture imaging using an open cavity with a rough base","authors":"Ehsan Rashidi-Ranjbar,&nbsp;Jalil A. Rashed-Mohassel,&nbsp;Mojtaba Dehmollaian","doi":"10.1049/mia2.12535","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a single-shot computational imaging using a new frequency-diverse aperture, an open-ended cavity with a rough surface base. First, it shows that scattering from a conducting rough surface made of conducting cones placed at random positions on a conducting ground plane, normally illuminated by an ultra-wideband horn antenna (working in the 2–20 GHz range) provides random patterns with a frequency correlation function (FCF) width of Δ<i>f</i>, about hundreds of MHz. Next, by introducing four conducting walls placed around the rough surface, it obtains a higher number of spatially uncorrelated radiation patterns and a narrower FCF width of about Δ<i>f</i>/10, tens of MHz. To approximate the radiation patterns and measurement matrices in the numerical simulations, the geometrical optics (GO) approximation is used taking into account multiple interactions. On the other hand, to estimate them in practice, a trihedral corner reflector installed on an XYZ positioning table is employed. Finally, the image of a planar object with the shape of plus is reconstructed using the minimum least-squares technique. The paper shows that for a 0.81 square metre image size, a decent-focused image with a pixel size of about 0.81/400 square metres (about 5 cm × 5 cm) is realisable by using 400 frequency samples within the frequency range of 2–20 GHz.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"18 12","pages":"1139-1147"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12535","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12535","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a single-shot computational imaging using a new frequency-diverse aperture, an open-ended cavity with a rough surface base. First, it shows that scattering from a conducting rough surface made of conducting cones placed at random positions on a conducting ground plane, normally illuminated by an ultra-wideband horn antenna (working in the 2–20 GHz range) provides random patterns with a frequency correlation function (FCF) width of Δf, about hundreds of MHz. Next, by introducing four conducting walls placed around the rough surface, it obtains a higher number of spatially uncorrelated radiation patterns and a narrower FCF width of about Δf/10, tens of MHz. To approximate the radiation patterns and measurement matrices in the numerical simulations, the geometrical optics (GO) approximation is used taking into account multiple interactions. On the other hand, to estimate them in practice, a trihedral corner reflector installed on an XYZ positioning table is employed. Finally, the image of a planar object with the shape of plus is reconstructed using the minimum least-squares technique. The paper shows that for a 0.81 square metre image size, a decent-focused image with a pixel size of about 0.81/400 square metres (about 5 cm × 5 cm) is realisable by using 400 frequency samples within the frequency range of 2–20 GHz.

Abstract Image

采用带有粗糙底座的开腔的变频孔径成像
本文提出了一种单镜头计算成像方法,使用一种新的频率变化孔径,一种具有粗糙表面基底的开放式腔体。首先,它表明,由放置在导电地平面上随机位置的导电锥组成的导电粗糙表面的散射,通常由超宽带喇叭天线(工作在2-20 GHz范围内)照射,提供频率相关函数(FCF)宽度为Δf的随机图案,约为数百MHz。接下来,通过在粗糙表面周围引入四个导电壁,获得了更多的空间不相关辐射模式和更窄的FCF宽度,约为Δf/ 10,10 MHz。为了在数值模拟中逼近辐射方向图和测量矩阵,采用了考虑多重相互作用的几何光学近似。另一方面,为了在实际中对其进行估计,采用了安装在XYZ定位台上的三面体角反射器。最后,利用最小二乘技术对一个+形状的平面目标图像进行重构。本文表明,对于0.81平方米的图像尺寸,在2-20 GHz的频率范围内使用400个频率样本,可以实现像素尺寸约为0.81/400平方米(约5 cm × 5 cm)的体面聚焦图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Microwaves Antennas & Propagation
Iet Microwaves Antennas & Propagation 工程技术-电信学
CiteScore
4.30
自引率
5.90%
发文量
109
审稿时长
7 months
期刊介绍: Topics include, but are not limited to: Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques. Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas. Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms. Radiowave propagation at all frequencies and environments. Current Special Issue. Call for papers: Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信