Fault location method for new distribution networks based on waveform matching of time–frequency travelling waves

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
IET Smart Grid Pub Date : 2024-10-01 DOI:10.1049/stg2.12190
Zhongqiang Zhou, Yuan Wen, Moujun Deng, Jianwei Ma, Jupeng Zeng, Xiaolong She
{"title":"Fault location method for new distribution networks based on waveform matching of time–frequency travelling waves","authors":"Zhongqiang Zhou,&nbsp;Yuan Wen,&nbsp;Moujun Deng,&nbsp;Jianwei Ma,&nbsp;Jupeng Zeng,&nbsp;Xiaolong She","doi":"10.1049/stg2.12190","DOIUrl":null,"url":null,"abstract":"<p>Some existing fault location methods for distribution networks rely too much on the local wave head information of the time or frequency domain signals, making it difficult to adapt to the increasingly complex structure and operating conditions of the distribution network after the new energy access. For improvement, the travelling wave (TW) time and frequency ranges that can effectively avoid waveform distortion caused by new energy access are analysed. The one-to-one matching relationship between the TW waveforms in these ranges and the fault positions is revealed. A fault TW time–frequency matrix with specific time and frequency windows is constructed, and a new distribution network fault location method is proposed based on the matching technique of waveform features, which realises the accurate fault location by exploring the proportionality between the cumulative trend of the matrix energy amplitude deviation and the fault point position. Simulation test results show that the proposed method is not affected by the complex structure of distribution networks such as new energy access and overhead-cable line mixing on fault location and flexibly transforms the fault location problem into a time–frequency TW waveform matching problem, which improves the accuracy and robustness of the fault location for new distribution networks to a degree.</p>","PeriodicalId":36490,"journal":{"name":"IET Smart Grid","volume":"7 6","pages":"929-939"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/stg2.12190","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Grid","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/stg2.12190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Some existing fault location methods for distribution networks rely too much on the local wave head information of the time or frequency domain signals, making it difficult to adapt to the increasingly complex structure and operating conditions of the distribution network after the new energy access. For improvement, the travelling wave (TW) time and frequency ranges that can effectively avoid waveform distortion caused by new energy access are analysed. The one-to-one matching relationship between the TW waveforms in these ranges and the fault positions is revealed. A fault TW time–frequency matrix with specific time and frequency windows is constructed, and a new distribution network fault location method is proposed based on the matching technique of waveform features, which realises the accurate fault location by exploring the proportionality between the cumulative trend of the matrix energy amplitude deviation and the fault point position. Simulation test results show that the proposed method is not affected by the complex structure of distribution networks such as new energy access and overhead-cable line mixing on fault location and flexibly transforms the fault location problem into a time–frequency TW waveform matching problem, which improves the accuracy and robustness of the fault location for new distribution networks to a degree.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Smart Grid
IET Smart Grid Computer Science-Computer Networks and Communications
CiteScore
6.70
自引率
4.30%
发文量
41
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信