Kimberly Wood , Wataru Yanase , Jack Beven , Suzana J. Camargo , Joseph B. Courtney , Chris Fogarty , Junya Fukuda , Naoko Kitabatake , Matthew Kucas , Ron McTaggart-Cowan , Michelle Simões Reboita , Jacopo Riboldi
{"title":"Phase transitions between tropical, subtropical, and extratropical cyclones: A review from IWTC-10","authors":"Kimberly Wood , Wataru Yanase , Jack Beven , Suzana J. Camargo , Joseph B. Courtney , Chris Fogarty , Junya Fukuda , Naoko Kitabatake , Matthew Kucas , Ron McTaggart-Cowan , Michelle Simões Reboita , Jacopo Riboldi","doi":"10.1016/j.tcrr.2023.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>This review, which was adapted from a Tenth International Workshop on Tropical Cyclones (IWTC-10) report, discusses research findings and operational practices relevant to cyclone types and phase transitions (extratropical, subtropical, and tropical). The cyclone phase space (CPS) method is widely used in both historical investigations and real-time evaluation of cyclone type and transition; however, CPS parameter values depend on input data resolution, and universal thresholds do not currently exist to delineate when a cyclone transitions from one type to another. Assessments of phase transitions in a changing climate highlight potential latitude shifts in extratropical transition and increased potential for tropical transition, but realistic projections of future trends likely require high-resolution simulations that can capture the cyclone warm core.</div><div>Operational meteorological centers apply varied approaches to cyclone classification via CPS parameters and other criteria, some of which depend on the tropical basin, yet these approaches cannot fully address challenges in operational classification and subsequently in communicating risks associated with these phase transitions. We recommend a multivariate historical assessment of tropical and subtropical cyclones across all basins in which they occur, including the South Atlantic Ocean and the Mediterranean Sea, to identify the potential for a more universal cyclone classification approach that meets operational needs.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"12 4","pages":"Pages 294-308"},"PeriodicalIF":2.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603223000516","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This review, which was adapted from a Tenth International Workshop on Tropical Cyclones (IWTC-10) report, discusses research findings and operational practices relevant to cyclone types and phase transitions (extratropical, subtropical, and tropical). The cyclone phase space (CPS) method is widely used in both historical investigations and real-time evaluation of cyclone type and transition; however, CPS parameter values depend on input data resolution, and universal thresholds do not currently exist to delineate when a cyclone transitions from one type to another. Assessments of phase transitions in a changing climate highlight potential latitude shifts in extratropical transition and increased potential for tropical transition, but realistic projections of future trends likely require high-resolution simulations that can capture the cyclone warm core.
Operational meteorological centers apply varied approaches to cyclone classification via CPS parameters and other criteria, some of which depend on the tropical basin, yet these approaches cannot fully address challenges in operational classification and subsequently in communicating risks associated with these phase transitions. We recommend a multivariate historical assessment of tropical and subtropical cyclones across all basins in which they occur, including the South Atlantic Ocean and the Mediterranean Sea, to identify the potential for a more universal cyclone classification approach that meets operational needs.
期刊介绍:
Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome.
Scope of the journal includes:
• Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies
• Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings
• Basic theoretical studies of tropical cyclones
• Event reports, compelling images, and topic review reports of tropical cyclones
• Impacts, risk assessments, and risk management techniques related to tropical cyclones