Antibacterial activity and impact on keratinocyte cell growth of Cutibacterium acnes bacteriophages in a Cutibacterium acnes IA1- colonized keratinocyte model

IF 4.8 Q1 MICROBIOLOGY
Juan C Farfán-Esquivel , María Victoria Gutiérrez , Alejandro Ondo-Méndez , John M González , Martha J Vives-Flórez
{"title":"Antibacterial activity and impact on keratinocyte cell growth of Cutibacterium acnes bacteriophages in a Cutibacterium acnes IA1- colonized keratinocyte model","authors":"Juan C Farfán-Esquivel ,&nbsp;María Victoria Gutiérrez ,&nbsp;Alejandro Ondo-Méndez ,&nbsp;John M González ,&nbsp;Martha J Vives-Flórez","doi":"10.1016/j.crmicr.2025.100356","DOIUrl":null,"url":null,"abstract":"<div><div>Acne is an inflammatory disease in which microbial disbalance is represented by an augmented population of phylotype IA<sub>1</sub> of <em>Cutibacterium acnes</em>. Various treatments for acne can cause side effects, and it has been reported that <em>C. acnes</em> is resistant to prescribed antibiotics. Phage therapy has been proposed as an alternative treatment for acne, given its species-specificity to kill bacteria, its relative innocuity, and its potential to manage antibiotic-resistant pathogens. Moreover, bacteriophages (phages) may modulate the microbiota and immune responses. Some studies have shown the potential use of phages in the treatment of acne. Nevertheless, the capacity to specifically reduce phylotype IA<sub>1</sub> and the effect of phage treatment on skin cells are poorly understood. We assessed the capacity of phages to clear <em>C. acnes</em> IA<sub>1</sub> and their effects on cell cytotoxicity and growth in HEKa cells<em>- C. acnes</em> IA<sub>1</sub> co-culture. Phylotypes IA<sub>1</sub> and IB had similar effects on HEKa cells, causing cytotoxicity and diminishing cell growth. Nevertheless, IA<sub>1</sub> caused a higher impact on cell doubling time by increasing it 1.8 times more than cell growth control group. Even though there are no phages IA<sub>1</sub>-specific, we found phages that have a diminished effect on other phylotypes not related to acne. Phage treatment in general reduced IA<sub>1</sub>-caused cytotoxicity, with differences in efficacy among phages. In addition, phage purification was necessary to restore metabolic activity and growth of HEKa. Overall, phage evaluation as a therapeutic alternative should include phage-bacteria interactions and their impact on skin cells because of the differences that each phage can exhibit.</div></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":"8 ","pages":"Article 100356"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Microbial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666517425000185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acne is an inflammatory disease in which microbial disbalance is represented by an augmented population of phylotype IA1 of Cutibacterium acnes. Various treatments for acne can cause side effects, and it has been reported that C. acnes is resistant to prescribed antibiotics. Phage therapy has been proposed as an alternative treatment for acne, given its species-specificity to kill bacteria, its relative innocuity, and its potential to manage antibiotic-resistant pathogens. Moreover, bacteriophages (phages) may modulate the microbiota and immune responses. Some studies have shown the potential use of phages in the treatment of acne. Nevertheless, the capacity to specifically reduce phylotype IA1 and the effect of phage treatment on skin cells are poorly understood. We assessed the capacity of phages to clear C. acnes IA1 and their effects on cell cytotoxicity and growth in HEKa cells- C. acnes IA1 co-culture. Phylotypes IA1 and IB had similar effects on HEKa cells, causing cytotoxicity and diminishing cell growth. Nevertheless, IA1 caused a higher impact on cell doubling time by increasing it 1.8 times more than cell growth control group. Even though there are no phages IA1-specific, we found phages that have a diminished effect on other phylotypes not related to acne. Phage treatment in general reduced IA1-caused cytotoxicity, with differences in efficacy among phages. In addition, phage purification was necessary to restore metabolic activity and growth of HEKa. Overall, phage evaluation as a therapeutic alternative should include phage-bacteria interactions and their impact on skin cells because of the differences that each phage can exhibit.
在痤疮表皮杆菌IA1定殖角质细胞模型中,痤疮表皮杆菌噬菌体的抗菌活性及其对角质细胞生长的影响
痤疮是一种炎症性疾病,其中微生物失衡表现为痤疮表皮杆菌IA1型种群的扩增。痤疮的各种治疗方法都会产生副作用,据报道,痤疮C.对处方抗生素有抗药性。鉴于噬菌体疗法具有杀死细菌的物种特异性,相对无害,并且具有控制耐抗生素病原体的潜力,因此已提出噬菌体疗法作为痤疮的替代治疗方法。此外,噬菌体(噬菌体)可以调节微生物群和免疫反应。一些研究表明噬菌体在治疗痤疮方面有潜在的用途。然而,特异性降低IA1型的能力和噬菌体治疗对皮肤细胞的影响尚不清楚。我们评估了噬菌体清除痤疮C. IA1的能力,以及它们对HEKa细胞-痤疮C. IA1共培养的细胞毒性和生长的影响。种型IA1和IB对HEKa细胞有相似的作用,引起细胞毒性和细胞生长减弱。然而,IA1对细胞倍增时间的影响更大,比细胞生长对照组增加1.8倍。尽管没有噬菌体ia1特异性,但我们发现噬菌体对其他与痤疮无关的种型的影响减弱。噬菌体处理总体上降低了ia1引起的细胞毒性,但不同噬菌体的效果不同。此外,噬菌体纯化对于恢复HEKa的代谢活性和生长是必要的。总的来说,噬菌体作为一种治疗选择的评估应包括噬菌体与细菌的相互作用及其对皮肤细胞的影响,因为每种噬菌体都可能表现出差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Microbial Sciences
Current Research in Microbial Sciences Immunology and Microbiology-Immunology and Microbiology (miscellaneous)
CiteScore
7.90
自引率
0.00%
发文量
81
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信