Suya Gan , Li-Xin Gao , Zitong Cao , Chun Zhang , Yiqiu Fu , Wen-Long Wang
{"title":"Synthesis, photophysical properties and fluorescent application of novel [1,2,4]triazolo[1,5-a]pyrimidin-7(4H)-one derivatives","authors":"Suya Gan , Li-Xin Gao , Zitong Cao , Chun Zhang , Yiqiu Fu , Wen-Long Wang","doi":"10.1016/j.jphotochem.2025.116294","DOIUrl":null,"url":null,"abstract":"<div><div>To extend the application of our theoretical screening method for exploring novel fluorescent fragments, we identified [1,2,4]triazolo[1,5-a]pyrimidin-7(4H)-one as a potential fluorophore, whose optical properties are rarely investigated. In this work, nineteen of novel [1,2,4]triazolo[1,5-a]pyrimidin-7(4H)-one derivatives were designed, synthesized and the relationship between the structure and fluorescence property of [1,2,4]triazolo[1,5-a]pyrimidin-7(4H)-one derivatives was systematically elucidated. The representative compound 5b exhibited notable fluorescence intensity with good fluorescence quantum yield (Φ = 0.285) in PBS. More importantly, compound 5b selectively detected the Fe<sup>3+</sup> ions through fluorescent quenching effect with rapid response, good anti-interference and low detection limit (LOD = 1.82 μM), and could be applied for encryption ink. This work provides an efficient way to explore novel fluorescent molecules.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"464 ","pages":"Article 116294"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603025000346","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To extend the application of our theoretical screening method for exploring novel fluorescent fragments, we identified [1,2,4]triazolo[1,5-a]pyrimidin-7(4H)-one as a potential fluorophore, whose optical properties are rarely investigated. In this work, nineteen of novel [1,2,4]triazolo[1,5-a]pyrimidin-7(4H)-one derivatives were designed, synthesized and the relationship between the structure and fluorescence property of [1,2,4]triazolo[1,5-a]pyrimidin-7(4H)-one derivatives was systematically elucidated. The representative compound 5b exhibited notable fluorescence intensity with good fluorescence quantum yield (Φ = 0.285) in PBS. More importantly, compound 5b selectively detected the Fe3+ ions through fluorescent quenching effect with rapid response, good anti-interference and low detection limit (LOD = 1.82 μM), and could be applied for encryption ink. This work provides an efficient way to explore novel fluorescent molecules.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.