Brain-targeted M2 macrophage membrane-hybrid biomimetic liposomes for treatment of traumatic brain injury

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Yizhi Zhang , Jintao Shen , Junzhe Yang , Guiyu Huang , Hong Niu , Shuxiu Zhang , Ziyan Tang , Yaxin Wang , Yaomin Tan , Jingjing Liu , Xi Chen , Lina Du , Yiguang Jin
{"title":"Brain-targeted M2 macrophage membrane-hybrid biomimetic liposomes for treatment of traumatic brain injury","authors":"Yizhi Zhang ,&nbsp;Jintao Shen ,&nbsp;Junzhe Yang ,&nbsp;Guiyu Huang ,&nbsp;Hong Niu ,&nbsp;Shuxiu Zhang ,&nbsp;Ziyan Tang ,&nbsp;Yaxin Wang ,&nbsp;Yaomin Tan ,&nbsp;Jingjing Liu ,&nbsp;Xi Chen ,&nbsp;Lina Du ,&nbsp;Yiguang Jin","doi":"10.1016/j.ijpharm.2025.125316","DOIUrl":null,"url":null,"abstract":"<div><div>Traumatic brain injury (TBI) is highly incidental but effective solutions are absent. Moreover, the secondary injury following TBI is arising due to the Ca<sup>2+</sup> influx of injured neural cells. Here, a Ca<sup>2+</sup> influx inhibitor, nimodipine, was loaded in M2 macrophage membrane-hybrid biomimetic liposomes (NM2Ls). NM2Ls significantly inhibited the influx of Ca<sup>2+</sup> into inflammatory neural cells and reduced the expression of inflammatory factors. More importantly, intravenously injected NM2Ls avoided the clearance of the immune system and targeted the brain via CCR2 following TBI; the inflammation in the brain was greatly alleviated in the TBI mouse model. NM2Ls improved the long-term learning and memory abilities as well as the motor abilities of TBI mice. Oxidative stress indicators were reduced and the repair of nerve cells was improved. NM2Ls is a promising brain-targeted medicine by the biomembrane biomimetic strategy.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"672 ","pages":"Article 125316"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325001528","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Traumatic brain injury (TBI) is highly incidental but effective solutions are absent. Moreover, the secondary injury following TBI is arising due to the Ca2+ influx of injured neural cells. Here, a Ca2+ influx inhibitor, nimodipine, was loaded in M2 macrophage membrane-hybrid biomimetic liposomes (NM2Ls). NM2Ls significantly inhibited the influx of Ca2+ into inflammatory neural cells and reduced the expression of inflammatory factors. More importantly, intravenously injected NM2Ls avoided the clearance of the immune system and targeted the brain via CCR2 following TBI; the inflammation in the brain was greatly alleviated in the TBI mouse model. NM2Ls improved the long-term learning and memory abilities as well as the motor abilities of TBI mice. Oxidative stress indicators were reduced and the repair of nerve cells was improved. NM2Ls is a promising brain-targeted medicine by the biomembrane biomimetic strategy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
文献相关原料
公司名称
产品信息
索莱宝
Lipopolysaccharide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信