Learning transactions representations for information management in banks: Mastering local, global, and external knowledge

Alexandra Bazarova , Maria Kovaleva , Ilya Kuleshov , Evgenia Romanenkova , Alexander Stepikin , Aleksandr Yugay , Dzhambulat Mollaev , Ivan Kireev , Andrey Savchenko , Alexey Zaytsev
{"title":"Learning transactions representations for information management in banks: Mastering local, global, and external knowledge","authors":"Alexandra Bazarova ,&nbsp;Maria Kovaleva ,&nbsp;Ilya Kuleshov ,&nbsp;Evgenia Romanenkova ,&nbsp;Alexander Stepikin ,&nbsp;Aleksandr Yugay ,&nbsp;Dzhambulat Mollaev ,&nbsp;Ivan Kireev ,&nbsp;Andrey Savchenko ,&nbsp;Alexey Zaytsev","doi":"10.1016/j.jjimei.2025.100323","DOIUrl":null,"url":null,"abstract":"<div><div>In today’s world, banks use artificial intelligence to optimize diverse business processes, aiming to improve customer experience. Most of the customer-related tasks can be categorized into two groups: (1) local ones, which focus on a client’s current state, such as transaction forecasting, and (2) global ones, which consider the general customer behaviour, e.g., predicting successful loan repayment. Unfortunately, maintaining separate models for each task is costly. Therefore, to better facilitate information management, we compared eight state-of-the-art unsupervised methods on 11 tasks in search for a one-size-fits-all solution. Contrastive self-supervised learning methods were demonstrated to excel at global problems, while generative techniques were superior at local tasks. We also introduced a novel approach, which enriches the client’s representation by incorporating external information gathered from other clients. Our method outperforms classical models, boosting accuracy by up to 20%.</div></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"5 1","pages":"Article 100323"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667096825000059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In today’s world, banks use artificial intelligence to optimize diverse business processes, aiming to improve customer experience. Most of the customer-related tasks can be categorized into two groups: (1) local ones, which focus on a client’s current state, such as transaction forecasting, and (2) global ones, which consider the general customer behaviour, e.g., predicting successful loan repayment. Unfortunately, maintaining separate models for each task is costly. Therefore, to better facilitate information management, we compared eight state-of-the-art unsupervised methods on 11 tasks in search for a one-size-fits-all solution. Contrastive self-supervised learning methods were demonstrated to excel at global problems, while generative techniques were superior at local tasks. We also introduced a novel approach, which enriches the client’s representation by incorporating external information gathered from other clients. Our method outperforms classical models, boosting accuracy by up to 20%.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信