{"title":"The phase transitions of diameters in random axis-parallel hyperrectangle intersection graphs","authors":"Congsong Zhang , Yong Gao , James Nastos","doi":"10.1016/j.dam.2025.01.044","DOIUrl":null,"url":null,"abstract":"<div><div>We study the behaviours of diameters in two models of random axis-parallel hyperrectangle intersection graphs: <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>u</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></mrow></math></span>. These two models use axis-parallel <span><math><mi>l</mi></math></span>-dimensional hyperrectangles to represent vertices, and vertices are adjacent if and only if their corresponding axis-parallel hyperrectangles intersect. In the model <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></mrow></math></span>, we distribute <span><math><mi>n</mi></math></span> points within <span><math><msup><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>l</mi></mrow></msup></math></span> uniformly and independently, and each point is the centre of an axis-parallel <span><math><mi>l</mi></math></span>-dimensional hypercube with edge length <span><math><mi>r</mi></math></span>. The model <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>u</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></mrow></math></span>, distributing the centres of <span><math><mi>n</mi></math></span> axis-parallel <span><math><mi>l</mi></math></span>-dimensional hyperrectangles within <span><math><msup><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>l</mi></mrow></msup></math></span> exactly as the model <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></mrow></math></span>, assigns a length from a uniform distribution over <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>r</mi><mo>]</mo></mrow></math></span> to each edge of the <span><math><mi>n</mi></math></span> axis-parallel <span><math><mi>l</mi></math></span>-dimensional hyperrectangles.</div><div>We prove that in the model <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></mrow></math></span>, there is a phase transition for the event that the diameter is at most <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> occurring at <span><math><mrow><mi>r</mi><mo>=</mo><mi>d</mi><msup><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> if <span><math><mrow><mi>n</mi><mi>⋅</mi><mi>d</mi><msup><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mi>l</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msup><mo>≥</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>ϵ</mi></mrow></msup><mo>,</mo></mrow></math></span>\n where <span><math><mrow><mn>0</mn><mo><</mo><mi>ϵ</mi><mo><</mo><mn>1</mn></mrow></math></span> is an arbitrary small constant, and <span><math><mrow><mi>l</mi><mo>=</mo><mi>l</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mi>⋅</mi><mrow><mo>(</mo><mo>ln</mo><mi>n</mi><mo>)</mo></mrow><mi>⋅</mi><msup><mrow><mrow><mo>(</mo><mo>ln</mo><mo>ln</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>.</mo></mrow></math></span>\n In the model <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>u</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></mrow></math></span>, this phase transition occurs at <span><math><mrow><mi>r</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><mrow><mi>d</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"367 ","pages":"Pages 22-29"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25000496","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study the behaviours of diameters in two models of random axis-parallel hyperrectangle intersection graphs: and . These two models use axis-parallel -dimensional hyperrectangles to represent vertices, and vertices are adjacent if and only if their corresponding axis-parallel hyperrectangles intersect. In the model , we distribute points within uniformly and independently, and each point is the centre of an axis-parallel -dimensional hypercube with edge length . The model , distributing the centres of axis-parallel -dimensional hyperrectangles within exactly as the model , assigns a length from a uniform distribution over to each edge of the axis-parallel -dimensional hyperrectangles.
We prove that in the model , there is a phase transition for the event that the diameter is at most occurring at if
where is an arbitrary small constant, and
In the model , this phase transition occurs at .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.