Growth history of garnet from the Dulong Sn-Zn-In polymetallic deposit: Geochemical and UPb age constraints and their metallogenic significance

IF 3.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Shiyu Liu , Lin Ye , Yuping Liu , Hansheng Long , Chen Wei , Zhenzhong Xiang
{"title":"Growth history of garnet from the Dulong Sn-Zn-In polymetallic deposit: Geochemical and UPb age constraints and their metallogenic significance","authors":"Shiyu Liu ,&nbsp;Lin Ye ,&nbsp;Yuping Liu ,&nbsp;Hansheng Long ,&nbsp;Chen Wei ,&nbsp;Zhenzhong Xiang","doi":"10.1016/j.gexplo.2025.107699","DOIUrl":null,"url":null,"abstract":"<div><div>The Dulong skarn-type tin‑zinc‑indium (Sn-Zn-In) polymetallic deposit contains 5.5 million tonnes (Mt) Zn, 0.4 Mt. Sn, and 7 kt In. It is the third-largest cassiterite-sulfide deposit in China, and is located in the Laojunshan W<img>Sn polymetallic orefield on the southern margin of the Youjiang basin. While it is widely accepted that the Sn<img>Zn polymetallic mineralization is closely linked to the Yanshanian granites, the precise timing of skarn formation and its relationship to the granite magmatism has remained unclear due to a lack of reliable geochronological data. This has also hindered a comprehensive understanding of the ore-forming processes at Dulong. Garnet is a widely distributed major skarn mineral at Dulong. Field and laboratory studies have revealed two distinct garnet types (Grt I and II): Grt I is located near the main ore-controlling fault (F<sub>M</sub>), while Grt II is found near a shallow granite porphyry in eastern Dulong. Both types of garnet exhibit a core-mantle-rim structure, indicating that they were formed by multistage fluid metasomatism. In this study, in situ LA-ICP-MS U<img>Pb dating was carried out on both types of garnet. Additionally, major and trace element analyses of the garnet and its coexisting pyroxene were conducted to examine the formation and evolution of the skarn. The results show that Grt I has generally higher ΣREE, Y, HFSE, and U concentrations, suggesting that it was formed under low W/R ratios in a relatively reducing environment. The garnet contains a grossular core (Grt Ia), andradite mantle (Grt Ib), and a grossular-andradite solid solution rim (Grt Ic), reflecting an initial increase and then decrease in the W/R ratio of the magmatic-hydrothermal system. During this process, the fluid pH was neutral-acidic, and the oxygen fugacity (<em>f</em>O<sub>2</sub>) first decreased and then increased. In contrast, Grt II has lower ΣREE, Y, HFSE, and U concentrations, indicating its formation under higher W/R ratios in a more oxidizing environment. This garnet has also a grossular core (Grt IIa), andradite mantle (Grt IIb), and a grossular-andradite solid solution rim (Grt IIc). This reflects a system where the W/R ratio first increased and then decreased. The fluid pH shifted from neutral-acidic to acidic, and the <em>f</em>O<sub>2</sub> increased gradually. LA-ICP-MS U<img>Pb dating yielded 93 ± 2.4 Ma to 90.9 ± 0.7 Ma for Grt I and 80.4 ± 6.6 Ma for Grt II. Comparing these results with published data on the Cretaceous regional magmatism and Sn-polymetallic mineralization, we conclude that the magmatic-hydrothermal activity that formed Grt I and Grt II was associated with the concealed phase-II and phase-III Laojunshan granite, respectively. This study highlights the opportunities offered by garnet U<img>Pb dating for elucidating the formation age and ore genesis of Sn<img>Zn skarn systems.</div></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"271 ","pages":"Article 107699"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375674225000317","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Dulong skarn-type tin‑zinc‑indium (Sn-Zn-In) polymetallic deposit contains 5.5 million tonnes (Mt) Zn, 0.4 Mt. Sn, and 7 kt In. It is the third-largest cassiterite-sulfide deposit in China, and is located in the Laojunshan WSn polymetallic orefield on the southern margin of the Youjiang basin. While it is widely accepted that the SnZn polymetallic mineralization is closely linked to the Yanshanian granites, the precise timing of skarn formation and its relationship to the granite magmatism has remained unclear due to a lack of reliable geochronological data. This has also hindered a comprehensive understanding of the ore-forming processes at Dulong. Garnet is a widely distributed major skarn mineral at Dulong. Field and laboratory studies have revealed two distinct garnet types (Grt I and II): Grt I is located near the main ore-controlling fault (FM), while Grt II is found near a shallow granite porphyry in eastern Dulong. Both types of garnet exhibit a core-mantle-rim structure, indicating that they were formed by multistage fluid metasomatism. In this study, in situ LA-ICP-MS UPb dating was carried out on both types of garnet. Additionally, major and trace element analyses of the garnet and its coexisting pyroxene were conducted to examine the formation and evolution of the skarn. The results show that Grt I has generally higher ΣREE, Y, HFSE, and U concentrations, suggesting that it was formed under low W/R ratios in a relatively reducing environment. The garnet contains a grossular core (Grt Ia), andradite mantle (Grt Ib), and a grossular-andradite solid solution rim (Grt Ic), reflecting an initial increase and then decrease in the W/R ratio of the magmatic-hydrothermal system. During this process, the fluid pH was neutral-acidic, and the oxygen fugacity (fO2) first decreased and then increased. In contrast, Grt II has lower ΣREE, Y, HFSE, and U concentrations, indicating its formation under higher W/R ratios in a more oxidizing environment. This garnet has also a grossular core (Grt IIa), andradite mantle (Grt IIb), and a grossular-andradite solid solution rim (Grt IIc). This reflects a system where the W/R ratio first increased and then decreased. The fluid pH shifted from neutral-acidic to acidic, and the fO2 increased gradually. LA-ICP-MS UPb dating yielded 93 ± 2.4 Ma to 90.9 ± 0.7 Ma for Grt I and 80.4 ± 6.6 Ma for Grt II. Comparing these results with published data on the Cretaceous regional magmatism and Sn-polymetallic mineralization, we conclude that the magmatic-hydrothermal activity that formed Grt I and Grt II was associated with the concealed phase-II and phase-III Laojunshan granite, respectively. This study highlights the opportunities offered by garnet UPb dating for elucidating the formation age and ore genesis of SnZn skarn systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geochemical Exploration
Journal of Geochemical Exploration 地学-地球化学与地球物理
CiteScore
7.40
自引率
7.70%
发文量
148
审稿时长
8.1 months
期刊介绍: Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics. Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to: define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas. analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation. evaluate effects of historical mining activities on the surface environment. trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices. assess and quantify natural and technogenic radioactivity in the environment. determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis. assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches. Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信