Group I elements-adsorbed NiZnO monolayer: Electro-optical properties and potential applications

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Hoang Van Ngoc, Huynh Thi Phuong Thuy
{"title":"Group I elements-adsorbed NiZnO monolayer: Electro-optical properties and potential applications","authors":"Hoang Van Ngoc,&nbsp;Huynh Thi Phuong Thuy","doi":"10.1016/j.physb.2025.416922","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the structural, magnetic, and optical properties of NiZnO monolayers, both pristine and adsorbed with alkali metals (Li, Na, K, and Rb), are systematically analyzed using density functional theory (DFT) within the Vienna Ab initio Simulation Package (VASP). The pristine NiZnO monolayer exhibits a notable magnetic moment of 1.937 μB, highlighting its intrinsic magnetic character. Adsorption energies for all alkali-metal configurations are negative, indicating thermodynamically favorable adsorption processes accompanied by energy dissipation. Detailed investigations of the dielectric function, absorption coefficient, and electron-hole density reveal significant modifications in optical absorption spectra, particularly within the visible range, upon adsorption. These findings emphasize the tunable magnetic and optical properties of alkali-metal-adsorbed NiZnO monolayers, underscoring their potential for advanced optoelectronic and spintronic applications.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"700 ","pages":"Article 416922"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625000390","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the structural, magnetic, and optical properties of NiZnO monolayers, both pristine and adsorbed with alkali metals (Li, Na, K, and Rb), are systematically analyzed using density functional theory (DFT) within the Vienna Ab initio Simulation Package (VASP). The pristine NiZnO monolayer exhibits a notable magnetic moment of 1.937 μB, highlighting its intrinsic magnetic character. Adsorption energies for all alkali-metal configurations are negative, indicating thermodynamically favorable adsorption processes accompanied by energy dissipation. Detailed investigations of the dielectric function, absorption coefficient, and electron-hole density reveal significant modifications in optical absorption spectra, particularly within the visible range, upon adsorption. These findings emphasize the tunable magnetic and optical properties of alkali-metal-adsorbed NiZnO monolayers, underscoring their potential for advanced optoelectronic and spintronic applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信