CNTNF framework focus on forecasting and verifying network threats and faults

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hsia-Hsiang Chen
{"title":"CNTNF framework focus on forecasting and verifying network threats and faults","authors":"Hsia-Hsiang Chen","doi":"10.1016/j.iot.2025.101504","DOIUrl":null,"url":null,"abstract":"<div><div>I propose two frameworks. One framework combines network threats and network faults (CNTNF). This framework incorporates our previous network threat detection and fault localization research. For previous works, I propose three models—the fast filtering and identification system using an ant agent system to effectively defend against denial of service (DoS), quality of service (QoS) attacks, and QoS fault cases, it is called the unified threat identification and fault localization by using ant colony optimization (ACO) (UTFACO), the ant colony system for distributed detection and identification of distributed denial of service (DDoS), namely the distributed detection and identification ant colony system (DDIACS) and the software fault localization (SFL)/network fault localization (NFL) cases are overcome by the spectrum-based SFL (SSFL) system architecture. Additionally, the CNTNF includes the SSFL method to diagnose network faults and multiple QoS fault cases. For this reason, I design a flexible framework, which can be expanded based on the new features when the threats or faults are found and outperformed. The second framework is for the comparison and analysis of the various countermeasures against threats and faults. I develop the attack and defense for forecast and verification modeling framework (ADFVMF). ADFVMF accelerates the development of CNTNF and assesses its contribution value. The experimental results demonstrate that the aggregate total average (ATAVG) of detection rate (DEC-R), ATAVG of accuracy rate (ACC-R), and ATAVG of duration time (DUR-T) are 84.26 %, 88.03 %, and 11.38 s, respectively. Consequently, CNTNF is a stability framework based on the boundary limitations and the optimization of parameters in terms of efficiency and effectiveness.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"30 ","pages":"Article 101504"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525000174","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

I propose two frameworks. One framework combines network threats and network faults (CNTNF). This framework incorporates our previous network threat detection and fault localization research. For previous works, I propose three models—the fast filtering and identification system using an ant agent system to effectively defend against denial of service (DoS), quality of service (QoS) attacks, and QoS fault cases, it is called the unified threat identification and fault localization by using ant colony optimization (ACO) (UTFACO), the ant colony system for distributed detection and identification of distributed denial of service (DDoS), namely the distributed detection and identification ant colony system (DDIACS) and the software fault localization (SFL)/network fault localization (NFL) cases are overcome by the spectrum-based SFL (SSFL) system architecture. Additionally, the CNTNF includes the SSFL method to diagnose network faults and multiple QoS fault cases. For this reason, I design a flexible framework, which can be expanded based on the new features when the threats or faults are found and outperformed. The second framework is for the comparison and analysis of the various countermeasures against threats and faults. I develop the attack and defense for forecast and verification modeling framework (ADFVMF). ADFVMF accelerates the development of CNTNF and assesses its contribution value. The experimental results demonstrate that the aggregate total average (ATAVG) of detection rate (DEC-R), ATAVG of accuracy rate (ACC-R), and ATAVG of duration time (DUR-T) are 84.26 %, 88.03 %, and 11.38 s, respectively. Consequently, CNTNF is a stability framework based on the boundary limitations and the optimization of parameters in terms of efficiency and effectiveness.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信