Creating interpretable synthetic time series for enhancing the design and implementation of Internet of Things (IoT) solutions

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Dimitris Gkoulis
{"title":"Creating interpretable synthetic time series for enhancing the design and implementation of Internet of Things (IoT) solutions","authors":"Dimitris Gkoulis","doi":"10.1016/j.iot.2025.101500","DOIUrl":null,"url":null,"abstract":"<div><div>This study establishes a foundation for addressing the challenge of developing Internet of Things (IoT) solutions in the absence of real-world data, a common obstacle in the early stages of IoT design, prototyping, and testing. Motivated by the need for reliable and interpretable synthetic data, this work introduces a structured approach and a dedicated library for creating realistic time series data. The methodology emphasizes flexibility and modularity, allowing for the combination of distinct components–such as trends, seasonality, and noise–to create synthetic data that accurately reflects real-world phenomena while maintaining interpretability. The approach’s utility is demonstrated by creating synthetic air temperature time series, which are rigorously compared against real-world datasets to assess their fidelity. The results validate the proposed methodology’s and library’s effectiveness in producing data that closely mirrors real-world patterns, providing a robust tool for IoT development in data-constrained environments.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"30 ","pages":"Article 101500"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525000137","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study establishes a foundation for addressing the challenge of developing Internet of Things (IoT) solutions in the absence of real-world data, a common obstacle in the early stages of IoT design, prototyping, and testing. Motivated by the need for reliable and interpretable synthetic data, this work introduces a structured approach and a dedicated library for creating realistic time series data. The methodology emphasizes flexibility and modularity, allowing for the combination of distinct components–such as trends, seasonality, and noise–to create synthetic data that accurately reflects real-world phenomena while maintaining interpretability. The approach’s utility is demonstrated by creating synthetic air temperature time series, which are rigorously compared against real-world datasets to assess their fidelity. The results validate the proposed methodology’s and library’s effectiveness in producing data that closely mirrors real-world patterns, providing a robust tool for IoT development in data-constrained environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信