Photoplethysmography signals and physiological data in feature engineering and machine learning algorithms to calculate human-obesity-related indices

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chih-Ta Yen, Chia-Hsang Chang, Jung-Ren Wong
{"title":"Photoplethysmography signals and physiological data in feature engineering and machine learning algorithms to calculate human-obesity-related indices","authors":"Chih-Ta Yen,&nbsp;Chia-Hsang Chang,&nbsp;Jung-Ren Wong","doi":"10.1016/j.iot.2025.101503","DOIUrl":null,"url":null,"abstract":"<div><div>The study developed a method based on photoplethysmography (PPG) and machine learning algorithms to predict three human-obesity-related indices: body mass index (BMI), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT). This method eliminates the need for conventional, complex medical imaging examinations, such as computed tomography scans or magnetic resonance imaging. These conventional methods are not only time-consuming and expensive but computed tomography scans may also result in unnecessary radiation exposure to the body. PPG-based technology enables easy measurements without the need for complicated examination and measurement processes. In the proposed method, PPG signals are recorded and then processed to obtain statistical features, such as mean and variance. Subsequently, the measured data and extracted features are used in machine learning algorithms to predict human-obesity-related indices. Several feature engineering methods were employed to enhance the accuracy of our method, with the mean absolute errors for BMI, VAT, and SAT estimates decreasing from 0.419 to 0.228, from 0.624 to 0.563, and from 2.092 to 0.500, respectively. The results of the study indicate that combining PPG technology with machine learning and feature engineering methods is a convenient and effective method for measuring human-obesity-related indices. The information obtained through this method can enable individuals to understand their health status and adopt suitable measures for health management and disease prevention.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"30 ","pages":"Article 101503"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525000162","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The study developed a method based on photoplethysmography (PPG) and machine learning algorithms to predict three human-obesity-related indices: body mass index (BMI), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT). This method eliminates the need for conventional, complex medical imaging examinations, such as computed tomography scans or magnetic resonance imaging. These conventional methods are not only time-consuming and expensive but computed tomography scans may also result in unnecessary radiation exposure to the body. PPG-based technology enables easy measurements without the need for complicated examination and measurement processes. In the proposed method, PPG signals are recorded and then processed to obtain statistical features, such as mean and variance. Subsequently, the measured data and extracted features are used in machine learning algorithms to predict human-obesity-related indices. Several feature engineering methods were employed to enhance the accuracy of our method, with the mean absolute errors for BMI, VAT, and SAT estimates decreasing from 0.419 to 0.228, from 0.624 to 0.563, and from 2.092 to 0.500, respectively. The results of the study indicate that combining PPG technology with machine learning and feature engineering methods is a convenient and effective method for measuring human-obesity-related indices. The information obtained through this method can enable individuals to understand their health status and adopt suitable measures for health management and disease prevention.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信