Privacy-aware fall detection and alert management in smart environments using multimodal devices

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Marcos Lupión, Vicente González-Ruiz, Juan F. Sanjuan, Pilar M. Ortigosa
{"title":"Privacy-aware fall detection and alert management in smart environments using multimodal devices","authors":"Marcos Lupión,&nbsp;Vicente González-Ruiz,&nbsp;Juan F. Sanjuan,&nbsp;Pilar M. Ortigosa","doi":"10.1016/j.iot.2025.101526","DOIUrl":null,"url":null,"abstract":"<div><div>Falls are a leading cause of injury and mortality, especially among the elderly. While camera-based fall detection systems have shown success, they raise significant privacy concerns. Alternatives using wearable sensors or thermal cameras offer comparable accuracy but have yet to be combined for accurate fall detection. Additionally, most research focuses on fall detection without addressing post-fall user’s condition or personalized alerts. This study aims to develop a privacy-aware fall detection system leveraging wearable sensors and thermal cameras. In addition, an alert system integrates devices such as voice assistants and speakers to assess the user’s status after the fall and notify the event. The system improves detection accuracy, addresses privacy concerns, and enhances alert management through personalized responses. We propose an Internet of Things (IoT)-based system integrating all sensors and devices previously mentioned. Edge-based computation enables real-time detection, with Internet connectivity used only for sending alerts in case of a fall. Various machine learning algorithms and sensor sources are evaluated to determine their impact on detection accuracy. Experimental results show that fall detection using a convolutional neural network with thermal images from three viewpoints achieves an F1-score above 0.98. Similarly, traditional machine learning algorithms applied to wearable sensor data showed high performance (0.93 F1-score). Post-processing techniques effectively remove false positives, improving reliability and adoption in real environments. The proposed system ensures high accuracy while addressing privacy concerns. By integrating multimodal devices and edge-based computing, it offers a scalable, real-time solution for smart environments, ensuring timely responses through personalized alerts after falls.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"30 ","pages":"Article 101526"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525000393","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Falls are a leading cause of injury and mortality, especially among the elderly. While camera-based fall detection systems have shown success, they raise significant privacy concerns. Alternatives using wearable sensors or thermal cameras offer comparable accuracy but have yet to be combined for accurate fall detection. Additionally, most research focuses on fall detection without addressing post-fall user’s condition or personalized alerts. This study aims to develop a privacy-aware fall detection system leveraging wearable sensors and thermal cameras. In addition, an alert system integrates devices such as voice assistants and speakers to assess the user’s status after the fall and notify the event. The system improves detection accuracy, addresses privacy concerns, and enhances alert management through personalized responses. We propose an Internet of Things (IoT)-based system integrating all sensors and devices previously mentioned. Edge-based computation enables real-time detection, with Internet connectivity used only for sending alerts in case of a fall. Various machine learning algorithms and sensor sources are evaluated to determine their impact on detection accuracy. Experimental results show that fall detection using a convolutional neural network with thermal images from three viewpoints achieves an F1-score above 0.98. Similarly, traditional machine learning algorithms applied to wearable sensor data showed high performance (0.93 F1-score). Post-processing techniques effectively remove false positives, improving reliability and adoption in real environments. The proposed system ensures high accuracy while addressing privacy concerns. By integrating multimodal devices and edge-based computing, it offers a scalable, real-time solution for smart environments, ensuring timely responses through personalized alerts after falls.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信