Formal self-duality and numerical self-duality for symmetric association schemes

IF 0.7 3区 数学 Q2 MATHEMATICS
Kazumasa Nomura , Paul Terwilliger
{"title":"Formal self-duality and numerical self-duality for symmetric association schemes","authors":"Kazumasa Nomura ,&nbsp;Paul Terwilliger","doi":"10.1016/j.disc.2025.114394","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>X</mi><mo>=</mo><mo>(</mo><mi>X</mi><mo>,</mo><msubsup><mrow><mo>{</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo></math></span> denote a symmetric association scheme. Fix an ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> of the primitive idempotents of <span><math><mi>X</mi></math></span>, and let <em>P</em> (resp. <em>Q</em>) denote the corresponding first eigenmatrix (resp. second eigenmatrix) of <span><math><mi>X</mi></math></span>. The scheme <span><math><mi>X</mi></math></span> is said to be formally self-dual (with respect to the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>) whenever <span><math><mi>P</mi><mo>=</mo><mi>Q</mi></math></span>. We define <span><math><mi>X</mi></math></span> to be numerically self-dual (with respect to the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>) whenever the intersection numbers and Krein parameters satisfy <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>h</mi></mrow></msubsup><mo>=</mo><msubsup><mrow><mi>q</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>h</mi></mrow></msubsup></math></span> for <span><math><mn>0</mn><mo>≤</mo><mi>h</mi><mo>,</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mi>d</mi></math></span>. It is known that with respect to the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, formal self-duality implies numerical self-duality. This raises the following question: is it possible that with respect to the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, <span><math><mi>X</mi></math></span> is numerically self-dual but not formally self-dual? This is possible as we will show. We display an example of a symmetric association scheme and an ordering the primitive idempotents with respect to which the scheme is numerically self-dual but not formally self-dual. We have the following additional results about self-duality. Assume that <span><math><mi>X</mi></math></span> is <em>P</em>-polynomial. We show that the following are equivalent: (i) <span><math><mi>X</mi></math></span> is formally self-dual with respect to the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>; (ii) <span><math><mi>X</mi></math></span> is numerically self-dual with respect to the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>. Assume that the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> is <em>Q</em>-polynomial. We show that the following are equivalent: (i) <span><math><mi>X</mi></math></span> is formally self-dual with respect to the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>; (ii) <span><math><mi>X</mi></math></span> is numerically self-dual with respect to the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114394"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000020","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X=(X,{Ri}i=0d) denote a symmetric association scheme. Fix an ordering {Ei}i=0d of the primitive idempotents of X, and let P (resp. Q) denote the corresponding first eigenmatrix (resp. second eigenmatrix) of X. The scheme X is said to be formally self-dual (with respect to the ordering {Ei}i=0d) whenever P=Q. We define X to be numerically self-dual (with respect to the ordering {Ei}i=0d) whenever the intersection numbers and Krein parameters satisfy pi,jh=qi,jh for 0h,i,jd. It is known that with respect to the ordering {Ei}i=0d, formal self-duality implies numerical self-duality. This raises the following question: is it possible that with respect to the ordering {Ei}i=0d, X is numerically self-dual but not formally self-dual? This is possible as we will show. We display an example of a symmetric association scheme and an ordering the primitive idempotents with respect to which the scheme is numerically self-dual but not formally self-dual. We have the following additional results about self-duality. Assume that X is P-polynomial. We show that the following are equivalent: (i) X is formally self-dual with respect to the ordering {Ei}i=0d; (ii) X is numerically self-dual with respect to the ordering {Ei}i=0d. Assume that the ordering {Ei}i=0d is Q-polynomial. We show that the following are equivalent: (i) X is formally self-dual with respect to the ordering {Ei}i=0d; (ii) X is numerically self-dual with respect to the ordering {Ei}i=0d.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信