{"title":"Formal self-duality and numerical self-duality for symmetric association schemes","authors":"Kazumasa Nomura , Paul Terwilliger","doi":"10.1016/j.disc.2025.114394","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>X</mi><mo>=</mo><mo>(</mo><mi>X</mi><mo>,</mo><msubsup><mrow><mo>{</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup><mo>)</mo></math></span> denote a symmetric association scheme. Fix an ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> of the primitive idempotents of <span><math><mi>X</mi></math></span>, and let <em>P</em> (resp. <em>Q</em>) denote the corresponding first eigenmatrix (resp. second eigenmatrix) of <span><math><mi>X</mi></math></span>. The scheme <span><math><mi>X</mi></math></span> is said to be formally self-dual (with respect to the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>) whenever <span><math><mi>P</mi><mo>=</mo><mi>Q</mi></math></span>. We define <span><math><mi>X</mi></math></span> to be numerically self-dual (with respect to the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>) whenever the intersection numbers and Krein parameters satisfy <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>h</mi></mrow></msubsup><mo>=</mo><msubsup><mrow><mi>q</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow><mrow><mi>h</mi></mrow></msubsup></math></span> for <span><math><mn>0</mn><mo>≤</mo><mi>h</mi><mo>,</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mi>d</mi></math></span>. It is known that with respect to the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, formal self-duality implies numerical self-duality. This raises the following question: is it possible that with respect to the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, <span><math><mi>X</mi></math></span> is numerically self-dual but not formally self-dual? This is possible as we will show. We display an example of a symmetric association scheme and an ordering the primitive idempotents with respect to which the scheme is numerically self-dual but not formally self-dual. We have the following additional results about self-duality. Assume that <span><math><mi>X</mi></math></span> is <em>P</em>-polynomial. We show that the following are equivalent: (i) <span><math><mi>X</mi></math></span> is formally self-dual with respect to the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>; (ii) <span><math><mi>X</mi></math></span> is numerically self-dual with respect to the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>. Assume that the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> is <em>Q</em>-polynomial. We show that the following are equivalent: (i) <span><math><mi>X</mi></math></span> is formally self-dual with respect to the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>; (ii) <span><math><mi>X</mi></math></span> is numerically self-dual with respect to the ordering <span><math><msubsup><mrow><mo>{</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114394"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000020","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let denote a symmetric association scheme. Fix an ordering of the primitive idempotents of , and let P (resp. Q) denote the corresponding first eigenmatrix (resp. second eigenmatrix) of . The scheme is said to be formally self-dual (with respect to the ordering ) whenever . We define to be numerically self-dual (with respect to the ordering ) whenever the intersection numbers and Krein parameters satisfy for . It is known that with respect to the ordering , formal self-duality implies numerical self-duality. This raises the following question: is it possible that with respect to the ordering , is numerically self-dual but not formally self-dual? This is possible as we will show. We display an example of a symmetric association scheme and an ordering the primitive idempotents with respect to which the scheme is numerically self-dual but not formally self-dual. We have the following additional results about self-duality. Assume that is P-polynomial. We show that the following are equivalent: (i) is formally self-dual with respect to the ordering ; (ii) is numerically self-dual with respect to the ordering . Assume that the ordering is Q-polynomial. We show that the following are equivalent: (i) is formally self-dual with respect to the ordering ; (ii) is numerically self-dual with respect to the ordering .
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.