Enhancing electricity price forecasting accuracy: A novel filtering strategy for improved out-of-sample predictions

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS
Andrea Cerasa, Alessandro Zani
{"title":"Enhancing electricity price forecasting accuracy: A novel filtering strategy for improved out-of-sample predictions","authors":"Andrea Cerasa,&nbsp;Alessandro Zani","doi":"10.1016/j.apenergy.2025.125357","DOIUrl":null,"url":null,"abstract":"<div><div>Reliable electricity price forecasts are key for energy sector strategy. The presence of market volatility and price spikes may negatively affect the accuracy of predictions if not properly addressed. In this study, we introduced a novel filtering strategy designed to enhance the accuracy of electricity price forecasting by effectively identifying and replacing extreme price spikes. Our approach is grounded in the application of robust statistical techniques within a rolling window framework, allowing for the systematic cleansing of input data used for forecasting models. We validated the efficiency and accuracy of our method using state-of-the-art statistical and deep learning models within an open-access dataset framework encompassing six different energy markets. The comparison of accuracy metrics and the outcome of statistical tests consistently demonstrated improvements in forecast accuracy when using our filtered data, with gains of up to 4% for certain models with respect to the predictions obtained with unfiltered inputs. Finally, the proposed filtering strategy exhibits reasonable and affordable computational requirements, making it suitable for practical applications in a real-world market setting.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"383 ","pages":"Article 125357"},"PeriodicalIF":10.1000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030626192500087X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Reliable electricity price forecasts are key for energy sector strategy. The presence of market volatility and price spikes may negatively affect the accuracy of predictions if not properly addressed. In this study, we introduced a novel filtering strategy designed to enhance the accuracy of electricity price forecasting by effectively identifying and replacing extreme price spikes. Our approach is grounded in the application of robust statistical techniques within a rolling window framework, allowing for the systematic cleansing of input data used for forecasting models. We validated the efficiency and accuracy of our method using state-of-the-art statistical and deep learning models within an open-access dataset framework encompassing six different energy markets. The comparison of accuracy metrics and the outcome of statistical tests consistently demonstrated improvements in forecast accuracy when using our filtered data, with gains of up to 4% for certain models with respect to the predictions obtained with unfiltered inputs. Finally, the proposed filtering strategy exhibits reasonable and affordable computational requirements, making it suitable for practical applications in a real-world market setting.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信