{"title":"Enhancing electricity price forecasting accuracy: A novel filtering strategy for improved out-of-sample predictions","authors":"Andrea Cerasa, Alessandro Zani","doi":"10.1016/j.apenergy.2025.125357","DOIUrl":null,"url":null,"abstract":"<div><div>Reliable electricity price forecasts are key for energy sector strategy. The presence of market volatility and price spikes may negatively affect the accuracy of predictions if not properly addressed. In this study, we introduced a novel filtering strategy designed to enhance the accuracy of electricity price forecasting by effectively identifying and replacing extreme price spikes. Our approach is grounded in the application of robust statistical techniques within a rolling window framework, allowing for the systematic cleansing of input data used for forecasting models. We validated the efficiency and accuracy of our method using state-of-the-art statistical and deep learning models within an open-access dataset framework encompassing six different energy markets. The comparison of accuracy metrics and the outcome of statistical tests consistently demonstrated improvements in forecast accuracy when using our filtered data, with gains of up to 4% for certain models with respect to the predictions obtained with unfiltered inputs. Finally, the proposed filtering strategy exhibits reasonable and affordable computational requirements, making it suitable for practical applications in a real-world market setting.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"383 ","pages":"Article 125357"},"PeriodicalIF":10.1000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030626192500087X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Reliable electricity price forecasts are key for energy sector strategy. The presence of market volatility and price spikes may negatively affect the accuracy of predictions if not properly addressed. In this study, we introduced a novel filtering strategy designed to enhance the accuracy of electricity price forecasting by effectively identifying and replacing extreme price spikes. Our approach is grounded in the application of robust statistical techniques within a rolling window framework, allowing for the systematic cleansing of input data used for forecasting models. We validated the efficiency and accuracy of our method using state-of-the-art statistical and deep learning models within an open-access dataset framework encompassing six different energy markets. The comparison of accuracy metrics and the outcome of statistical tests consistently demonstrated improvements in forecast accuracy when using our filtered data, with gains of up to 4% for certain models with respect to the predictions obtained with unfiltered inputs. Finally, the proposed filtering strategy exhibits reasonable and affordable computational requirements, making it suitable for practical applications in a real-world market setting.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.