Yan Liang, XinHua Yu, LuCong Lu, JinJun Mo, YiYing Wang
{"title":"Temperature rise in a realistic arm model illuminated by plane electromagnetic wave","authors":"Yan Liang, XinHua Yu, LuCong Lu, JinJun Mo, YiYing Wang","doi":"10.1016/j.sspwt.2024.12.004","DOIUrl":null,"url":null,"abstract":"<div><div>In the application of the wireless power transfer process for the space solar power station, the continuous exposure to the electromagnetic wave could lead to significant thermal effect on human health. Therefore, this paper investigates the accumulated electromagnetic radiation at 5.8 GHz by the temperature rise on a practical arm model which comes from a Chinese female (26-year-old, 162 cm high, and 50kg weight) and the physiological condition setting is included. By comparing the external electromagnetic distributions on the body surfaces facing and facing away from the illumination source, the corresponding differences of two benchmark lines are obtained for both the simulated and measured situations where the normalized values are close in the whole band. Through this indirect analysis consistency for the surface field distribution, the interior field distributions of three different layers (skin, fat, and muscle) are obtained depending on the simulated results. Then, the temperature rise effects are evaluated of which the fat has the highest temperature rise in a short long time than those of the other two layers, and it is the energy source to make all the layers eventually turn to be relatively steady for the 2-hour period.</div></div>","PeriodicalId":101177,"journal":{"name":"Space Solar Power and Wireless Transmission","volume":"1 3","pages":"Pages 158-164"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Solar Power and Wireless Transmission","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S295010402400035X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the application of the wireless power transfer process for the space solar power station, the continuous exposure to the electromagnetic wave could lead to significant thermal effect on human health. Therefore, this paper investigates the accumulated electromagnetic radiation at 5.8 GHz by the temperature rise on a practical arm model which comes from a Chinese female (26-year-old, 162 cm high, and 50kg weight) and the physiological condition setting is included. By comparing the external electromagnetic distributions on the body surfaces facing and facing away from the illumination source, the corresponding differences of two benchmark lines are obtained for both the simulated and measured situations where the normalized values are close in the whole band. Through this indirect analysis consistency for the surface field distribution, the interior field distributions of three different layers (skin, fat, and muscle) are obtained depending on the simulated results. Then, the temperature rise effects are evaluated of which the fat has the highest temperature rise in a short long time than those of the other two layers, and it is the energy source to make all the layers eventually turn to be relatively steady for the 2-hour period.