Evolutionary induced survival trees for medical prognosis assessment

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Malgorzata Kretowska, Marek Kretowski
{"title":"Evolutionary induced survival trees for medical prognosis assessment","authors":"Malgorzata Kretowska,&nbsp;Marek Kretowski","doi":"10.1016/j.asoc.2024.112674","DOIUrl":null,"url":null,"abstract":"<div><div>Survival analysis focuses on predicting the time of a specific event, known as failure. In the analysis of survival data, it is crucial to fully leverage censored observations for which we do not have precise event time information. Decision trees are among the most frequently applied machine learning techniques for survival analysis, but to adequately address this issue, it is necessary to transform them into survival trees. This involves equipping the leaves with, for instance, local Kaplan–Meier estimators. Until now, survival trees have predominantly been generated using a greedy approach through classical top-down induction that uses local optimization. Recently, one of the most promising directions in decision tree approach is global learning. The paper proposes an evolutionary algorithm for survival tree induction, which concurrently searches for the tree structure, univariate tests in internal nodes, and Kaplan–Meier estimators in leaves. The fitness function is based on an integrated Brier score, and by introducing a penalty term related to the tree size, it becomes possible to control the interpretability of the obtained predictor. The work investigated, among other aspects, the impact of censoring, and the results obtained from both synthetic and real-life medical datasets are encouraging. The comparison of the predictive ability of the proposed method with already-known univariate survival trees shows statistically significant differences.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"170 ","pages":"Article 112674"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624014480","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Survival analysis focuses on predicting the time of a specific event, known as failure. In the analysis of survival data, it is crucial to fully leverage censored observations for which we do not have precise event time information. Decision trees are among the most frequently applied machine learning techniques for survival analysis, but to adequately address this issue, it is necessary to transform them into survival trees. This involves equipping the leaves with, for instance, local Kaplan–Meier estimators. Until now, survival trees have predominantly been generated using a greedy approach through classical top-down induction that uses local optimization. Recently, one of the most promising directions in decision tree approach is global learning. The paper proposes an evolutionary algorithm for survival tree induction, which concurrently searches for the tree structure, univariate tests in internal nodes, and Kaplan–Meier estimators in leaves. The fitness function is based on an integrated Brier score, and by introducing a penalty term related to the tree size, it becomes possible to control the interpretability of the obtained predictor. The work investigated, among other aspects, the impact of censoring, and the results obtained from both synthetic and real-life medical datasets are encouraging. The comparison of the predictive ability of the proposed method with already-known univariate survival trees shows statistically significant differences.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信